精英家教网 > 初中数学 > 题目详情

【题目】如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为

【答案】 π﹣2
【解析】解:∵四边形ABCD是矩形, ∴AD=BC=4,CD=AB=2,∠BCD=∠ADC=90°,
∴CE=BC=4,
∴CE=2CD,
∴∠DEC=30°,
∴∠DCE=60°,
由勾股定理得:DE=2
∴阴影部分的面积是S=S扇形CEB﹣SCDE= ×2×2 =
所以答案是:
【考点精析】利用扇形面积计算公式和旋转的性质对题目进行判断即可得到答案,需要熟知在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2);①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线相交于点,平分.

(1),求的度数;

(2)平分,BOF=12°,若设∠BOE=x°.

①则= . (用含的代数式表示)

②求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面内的两条直线有相交和平行两种位置关系.

1)如图1,若ABCD,点PABCD内部,B=50°D=30°,求BPD

2)如图2,将点P移到ABCD外部,则BPDBD之间有何数量关系?(不需证明)

3)如图3,写出BPDBDBQD之间的数量关系?请证明你的结论.

4)如图4,求出A+B+C+D+E+F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲同学用图3-①所示的方法作出了点C,表示数,在△OAB中,∠OAB=90°,OA=2,AB=3,且点O,A,C在同一数轴上,OB=OC.

(1)请说明甲同学这样做的理由;

(2)仿照甲同学的作法,在图3-②所给的数轴上描出表示-的点A.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为( )

A.2017π
B.2034π
C.3024π
D.3026π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在圆心角为90°的扇形OAB中,半径OA=4,C为 的中点,D、E分别为OA,OB的中点,则图中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的是某居民小区的一块长为bm,宽为2am的长方形空地,为了美化环境,准备在这个长方形空地的四个顶点各修建一个半径为am的扇形花台,然后在花台内种花,其余空地种草,如果建筑花台及种花每平方米需要资金200元,种草每平方米需要资金150元,那么美化这块空地共需资金多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,…,重复上述过程,经过2018次后,所得到的正六边形边长是原正六边形边长的(
A.( 2016
B.( 2017
C.( 2018
D.( 2019

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°BC=8cmAC=6cm,点EBC的中点,动点PA点出发,先以每秒2cm的速度沿AC运动,然后以1cm/s的速度沿CB运动.若设点P运动的时间是t秒,那么当t=_______APE的面积等于8

查看答案和解析>>

同步练习册答案