精英家教网 > 初中数学 > 题目详情
4.如图,D是△ABC中BC边上一点,∠B=∠DAC,AB2=BD•BC.求证:△ABD∽△CAD.

分析 根据AB2=BD•BC及∠B=∠B证得△ABD∽△CBA,由相似三角形性质可得∠BAD=∠C,结合∠B=∠DAC得证.

解答 证明:∵AB2=BD•BC,
∴$\frac{AB}{BC}=\frac{BD}{AB}$,
∵∠ABD=∠CBA,
∴△ABD∽△CBA,
∴∠BAD=∠C,
又∵∠B=∠DAC,
∴△ABD∽△CAD.

点评 本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,AD是Rt△ABC斜边BC上的中线,过A,D两点的⊙O交AC于E,弦EF∥BC.
(1)求证:AD=EF;
(2)若O在AC边上,且⊙O与BC边相切,当EF=2时,求$\widehat{EF}$的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.若5xm+1y5与3x2y2n+1是同类项,则m=1,n=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知a2+ab=5,ab+b2=-2,a+b=7,那么a-b=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,四边形ABCD内接于⊙O,连接AC和BD相交于E,且AC平分∠BAD,求证:BC2=AC•CE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.△ABD中,AB=AD,∠BAD=90°,P为直线AB上一动点,AE⊥DP于E,交直线BD于F.
(1)如图:若$\frac{AP}{BP}$=$\frac{1}{2}$,求$\frac{BF}{FD}$的值;
(2)如图2,若$\frac{AP}{AB}$=$\frac{1}{3}$,求$\frac{BF}{FD}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,在锐角△ABC中,BD、CE为高,F为BC的中点,连接DE、DF、EF,则结论:①DE=EF;②AD:AB=AE:AC;③△AEC∽△ADB;④AE+AD=BC,其中正确结论的序号是②③(写上所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平行四边形ABCD中,AB=3,BC=5,点F是AD上的一点,且DF=2,连接BF交AC于点E.
(1)证明:BF平分∠ABC;
(2)过A作AG⊥BF于点G,求$\frac{EG}{EF}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,AB、CD为⊙O的直径,E为OA的中点,直线CE交⊙O于另一点F,连接DF,若⊙O的半径为4,DF=$\sqrt{15}$,CE<EF
1)求证:△ACE∽△FBE;
2)求CE的长;
3)以F为圆心,DF为半径的圆与直线AB有怎样的位置关系?为什么?

查看答案和解析>>

同步练习册答案