精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC为等腰直角三角形,∠ACB=90°,点E、F是AB边所在直线上的两点,且∠ECF=135°.
(1)求证:△ECA∽△CFB;
(2)若AE=3,设AB=x,BF=y,求y与x之间的函数关系式,并写出x的取值范围.
分析:(1)根据等腰直角三角形性质求出∠CAE=∠CBF=135°,求出∠ECA+∠BCF=45°,∠E+∠ACE=45°,推出∠E=∠BCF,即可推出两三角形相似;
(2)根据等腰直角三角形性质和锐角三角函数定义求出AC和BC长,根据两时间相似得出比例式,代入即可求出答案.
解答:(1)证明:∵△ABC为等腰直角三角形,∠ACB=90°,
∴AC=BC,
∴∠CAB=∠CBA=45°,
∴∠CAE=180°-45°=135°,
同理∠CBF=135°,
∴∠CAE=∠CBF,
∵∠ECF=135°,∠ACB=90°,
∴∠ECA+∠BCF=45°,
∵∠ECA+∠E=∠CAB=45°,
∴∠E=∠BCF,
∵∠CAE=∠CBF,
∴△ECA∽△CFB;

(2)解:∵AB=x,∠CAB=45°,∠ACB=90°,AC=BC,
∴sin45°=
CB
x

∴CB=
2
2
x=AC,
∵由(1)知△ECA∽△CFB,
AE
CB
=
AC
BF

3
2
2
x
=
2
2
x
y

∴y=
1
6
x2
x的取值范围是x>0,
即y与x之间的函数关系式是y=
1
6
x2,x的取值范围是x>0.
点评:本题考查了相似三角形的性质和判定,等腰直角三角形性质,锐角三角函数的定义等知识点,通过做此题培养了学生的分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案