精英家教网 > 初中数学 > 题目详情

【题目】如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是(
A.△OAB是等边三角形
B.弦AC的长等于圆内接正十二边形的边长
C.OC平分弦AB
D.∠BAC=30°

【答案】D
【解析】解:∵OA=AB=OB, ∴△OAB是等边三角形,选项A正确,
∴∠AOB=60°,
∵OC⊥AB,
∴∠AOC=∠BOC=30°,AC=BC,弧AC=弧BC,
=12,∠BAC= ∠BOC=15°,
∴选项B、C正确,选项D错误,
故选D.
【考点精析】解答此题的关键在于理解垂径定理的相关知识,掌握垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,以及对正多边形和圆的理解,了解圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角;圆的外切四边形的两组对边的和相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一元二次方程x2+4x﹣12=0的两根的平方和=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践:

发现问题:

如图,已知:OAB中,OB=3,将OAB绕点O逆时针旋转90°OAB,连接BB

则BB=

问题探究:

如图,已知ABC是边长为4的等边三角形,以BC为边向外作等边BCD,P为ABC内一点,将线段CP绕点C逆时针旋转60°,P的对应点为Q.

(1)求证:DCQ≌△BCP

(2)求PA+PB+PC的最小值.

实际应用:

如图,某货运场为一个矩形场地ABCD,其中AB=500米,AD=800米,顶点A、D为两个出口,现在想在货运广场内建一个货物堆放平台P,在BC边上(含B、C两点)开一个货物入口M,并修建三条专用车道PA、PD、PM.若修建每米专用车道的费用为10000元,当M,P建在何处时,修建专用车道的费用最少?最少费用为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是小李骑自行车离家的距离s(km)与时间t(h)之间的关系.
(1)在这个变化过程中自变量是 , 因变量是
(2)小李何时到达离家最远的地方?此时离家多远?
(3)分别求出在1≤t≤2时和2≤t≤4时小李骑自行车的速度.
(4)请直接写出小李何时与家相距20km?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲地的海拔高度是h m,乙地的海拔高度是甲地海拔高度的3倍多20m,丙地的海拔高度比甲地的海拔高度低30m,列式计算乙、丙两地的高度差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】无沦m为何实数,直线y=-2x+2my=x-4的交点都不可能在( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年春节我市共接待国内外游客总人数3343200万人次,3343200这个数用科学记数法表示为(
A.0.33432×106
B.3.3432×106
C.3.3432×105
D.33.432×105

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.

(1)求BD的长;

(2)若DCN的面积为2,求四边形ABCM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x1,x2是一元二次方程4kx2﹣4kx+k+2=0的两个实数根.是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,请您说明理由.

查看答案和解析>>

同步练习册答案