【题目】如图,抛物线y=﹣x2+2x+3与y轴交于点C,顶点为D.
(1)求顶点D的坐标.
(2)求△OCD的面积.
科目:初中数学 来源: 题型:
【题目】两枚正四面体骰子的各面上分别标有数字1,2,3,4,现在同时投掷这两枚骰子,并分别记录着地的面所得的点数为a、b.
(1)假设两枚正四面体都是质地均匀,各面着地的可能性相同,请你在下面表格内列举出所有情形(例如(1,2),表示a=1,b=2),并求出两次着地的面点数相同的概率.
b | 1 | 2 | 3 | 4 |
1 | (1,2) | |||
2 | ||||
3 | ||||
4 |
(2)为了验证试验用的正四面体质地是否均匀,小明和他的同学取一枚正四面体进行投掷试验.试验中标号为1的面着地的数据如下:
试验总次数 | 50 | 100 | 150 | 200 | 250 | 500 |
“标号1”的面着地的次数 | 15 | 26 | 34 | 48 | 63 | 125 |
“标号1”的面着地的频率 | 0.3 | 0.26 | 0.23 | 0.24 |
请完成表格(数字精确到0.01),并根据表格中的数据估计“标号1的面着地”的概率是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣ x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.
(1)求抛物线的解析式;
(2)若PE=5EF,求m的值;
(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图像如图所示,当气球内气压大于120kPa时,气球将爆炸,为了安全起见,气球内的体积应( )
A. 小于1.25m3 B. 大于1.25m3 C. 不小于0.8m3 D. 大于0.8m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把的值叫做这个菱形的“形变度”;例如,当形变后的菱形是如图2形状(被对角线BD分成2个等边三角形),则这个菱形的“形变度”为2:;如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,△AEF(A、E、F是格点)同时形变为△A'E'F',若这个菱形的“形变度”k=,则_______;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△BOD都是等腰直角三角形,∠ACB=∠BDO=90°,且点A在反比例函数(k>0)的图像上,若OB2-AB2=10,则k的值为 ( )
A. 10 B. 5 C. 20 D. 2.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x,y的方程组 ,其中-3≤a≤1,给出下列结论:①当a=1时,方程组的解也是方程x+y=4-a的解;
②当a=-2时,x、y的值互为相反数;
③若x<1,则1≤y≤4;
④ 是方程组的解,其中正确的结论有
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆货车为一家摩托车配件批发部送货,先向南走了8km到达“华能”修理部,又向北走了3.5km到达“捷速”修理部,继续向北走了7.5km到达“志远”修理部,最后又回到了批发部.
(1)以批发部为原点,以向南的方向为正方向,用1个单位长度表示1km,你能在数轴上表示出“华能”、“捷速”、“志远”三家修理部的位置吗?
(2)“志远”修理部到“捷速”修理部多远?
(3)货车若行驶1千米需耗油0.5升,本次这辆货车共耗油多少升?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com