【题目】如图1,点A是线段BC上一点,△ABD,△AEC都是等边三角形,BE交AD于点M,CD交AE于N.
(1)求证:BE=DC;
(2)求证:△AMN是等边三角形;
(3)将△ACE绕点A按顺时针方向旋转90°,其它条件不变,在图2中补出符合要求的图形,并判断(1)、(2)两小题结论是否仍然成立,并加以证明.
【答案】(1)证明见详解;(2)证明见详解;(3)(1)的结论成立,(2)的结论不成立,证明见详解
【解析】
(1)根据等边三角形的性质得到AB=AD,AC=AE,∠DAB=∠EAC=60°,则∠DAC=∠BAE,根据“SAS"可判断△ABE≌△ADC,则BE= DC;
(2)由△ABE≌△ADC得到∠ABE=∠ADC,根据"AAS"可判断△ABM≌△ADN(AAS),则AM=AN;∠DAE=60°,根据等边三角形的判定方法可得到△AMN是等边三角形.
(3)判定结论1是否正确,也是通过证明△ABE≌△ADC求得,这两个三角形中AB=AD,AE=AC,∠BAE和∠CAD都是60°+∠ACB,因此两三角形就全等BE=CD,结论1正确;将△ACE绕点A按顺时针方向旋转90°,则∠DAC> 90°,因此三角形AMN绝对不可能是等边三角形.
解:(1)∵△ABD,△AEC都是等边三角形,
∴AB=AD,AC=AE,∠DAB=∠EAC=60°,
∴∠DAC=∠BAE,
在△ABE和△ADC中,,
∴△ABE≌△ADC(SAS),
∴BE=DC;
(2)由上述(1)证得:△ABE≌△ADC,
∴∠ABM=∠ADN.
在△ABM和△ADN中, ,
∴△ABM≌△ADN(AAS),
∴AM=AN.
∵∠DAE=60°,
∴△AMN是等边三角形;
(3)∵△ABD,△AEC都是等边三角形,
∴AB=AD,AC=AE,∠DAB=∠EAC=60°,
∴∠DAC=∠BAE,
在△ABE和△ADC中,,
∴△ABE≌△ADC(SAS),
∴BE=DC,∠ABE=∠ADC,
∵∠BAC=90°
∴∠MAN>90°,
∵∠MAN≠60°,
∴△AMN不是等边三角形,
∴(1)的结论成立,(2)的结论不成立.
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,已知点A(6,0),点B为y轴正半轴上一动点,连接AB,以AB为一边向下作等边△ABC,连接OC,则OC的最小值( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.
(1)证明:四边形CDEF是平行四边形;
(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】经过举国上下抗击新型冠状病毒的斗争,疫情得到了有效控制,国内各大企业在2月9日后纷纷进入复工状态.为了了解全国企业整体的复工情况,我们查找了截止到2020年3月1日全国部分省份的复工率,并对数据进行整理、描述和分析.下面给出了一些信息:
a.截止3月1日20时,全国已有11个省份工业企业复工率在90%以上,主要位于东南沿海地区,位居前三的分别是贵州(100%)、浙江(99.8%)、江苏(99%).
b.各省份复工率数据的频数分布直方图如图1(数据分成6组,分别是40<x≤50;
50<x≤60;60<x≤70;70<x≤80;80<x≤90;90<x≤100):
c.如图2,在b的基础上,画出扇形统计图:
d.截止到2020年3月1日各省份的复工率在80<x≤90这一组的数据是:
81.3 | 83.9 | 84 | 87.6 | 89.4 | 90 | 90 |
e.截止到2020年3月1日各省份的复工率的平均数、中位数、众数如下:
日期 | 平均数 | 中位数 | 众数 |
截止到2020年3月1日 | 80.79 | m | 50,90 |
请解答以下问题:
(1)依据题意,补全频数分布直方图;
(2)扇形统计图中50<x≤60这组的圆心角度数是 度(精确到0.1).
(3)中位数m的值是 .
(4)根据以上统计图表简述国内企业截止3月1日的复工率分布特征.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】武汉某超市在疫情前用3000元购进某种干果销售,发生疫情后,为了保障附近居民的生活需求,又调拨9000元购进该种干果.受疫情影响,交通等成本上涨,第二次的进价比第一次进价提高了20%,但是第二次购进干果的数量是第一次的2倍还多300千克,如果超市先按每千克9元的价格出售,当大部分干果售出后,最后的600千克按原售价的7折售完.售卖结束后,超市决定将盈利的资金捐助给武汉市用于抗击新冠肺炎疫情.那么该超市可以捐助___________元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=-2x+4与坐标轴分别交于C、B两点,过点C作CD⊥x轴,点P是x轴下方直线CD上的一点,且△OCP与△OBC相似,求过点P的双曲线解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是某品牌订书机,其截面示意图如图2所示.订书钉放置在轨槽CD内的MD处,由连接弹簧的推动器MN推紧,连杆EP一端固定在压柄CF上的点E处,另一端P在DM上移动.当点P与点M重合后,拉动压柄CF会带动推动器MN向点C移动.使用时,压柄CF的端点F与出钉口D重合,纸张放置在底座AB的合适位置下压完成装订(即点D与点H重合).已知CA⊥AB,CA=2cm,AH=12cm,CE=5cm,EP=6cm,MN=2cm.
(1)求轨槽CD的长(结果精确到0.1);
(2)装入订书钉需打开压柄FC,拉动推动器MN向点C移动,当∠FCD=53°时,能否在ND处装入一段长为2.5cm的订书钉?(参考数据:≈2.24,≈6.08,sin53°≈0.80,cos53°≈0.60)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com