精英家教网 > 初中数学 > 题目详情
如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.
(3)若点P为第一象限抛物线上一动点,连接BP、PE,求四边形ABPE面积的最大值,并求此时P点的坐标.
分析:(1)根据B的坐标求出c,设抛物线解析式为y=ax2+bx+3,把A、E的坐标代入得出方程组,求出方程组的解即可;
(2)根据点的坐标和勾股定理求出BD、DB、DE的长,根据勾股定理的逆定理求出∠DBE=90°,求出
AO
BD
=
BO
BE
,根据相似三角形的判定求出即可;
(3)四边形ABPE的面积等于△AOB的面积加上四边形BOQP的面积加上△PQE的面积,根据面积公式代入求出,化成二次函数的顶点式,即可求出答案.
解答:解:(1)∵抛物线与y轴交于点(0,3),
∴设抛物线解析式为y=ax2+bx+3,
根据题意得:
a-b+3=0
9a+3b+3=0

解得:
a=-1
b=2

∴抛物线的解析式是y=-x2+2x+3.
解法二、∵设解析式是y=a(x-3)(x+1),
把B(0,3)代入得:3=a(0-3)(0+1),
a=-1,
即y=-1(x-3)(x+1)=-x2+2x+3,
∴抛物线的解析式是y=-x2+2x+3.

(2)相似,
证明:过D作DF⊥x轴于F,过B作BG⊥DF于G,
如图,BD=
BG2+DG2
=
12+12
=
2
,BE=
BO2+OE2
=
32+32
=3
2

DE=
DF2+EF2
=
22+42
=2
5

∴BD2+BE2=20,DE2=20,
∴DB2+BE2=DE2
∴△BDE是直角三角形,
∴∠AOB=∠DBE=90°,且
AO
BD
=
BO
BE
=
2
2

∴△AOB∽△DBE.

(3)解:设点P的坐标为(x,y),过P作PQ⊥X轴于Q,
SABPE=S△ABO+SBOQP+S△PQE=
1
2
×1×3+
1
2
×(3+y)×x+
1
2
×y×(3-x)
=-
3
2
x2+
9
2
x+6=-
3
2
(x-
3
2
)2+9
3
8

x=
3
2
时,四边形ABPE面积最大,
此时,点P的坐标为(
3
2
15
4
)
点评:本题考查了勾股定理及逆定理,二次函数的最值,用待定系数法求二次函数的解析式,三角形的面积,相似三角形的判定等知识点的运用,解此题的关键是综合运用性质进行推理和计算,题型较好,通过做此题培养了学生的计算能力和观察图形的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)点M是直线CD上的一动点,BM交抛物线于N,是否存在点N是线段BM的中点,如果存在,求出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线与x轴交于点A(-1,0),与y轴交于点C(0,3),且对称轴方程为x=1
(1)求抛物线与x轴的另一个交点B的坐标;
(2)求抛物线的解析式;
(3)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(4)若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于点A(-1,0),E(3,0),与y轴交于点B,且该精英家教网函数的最大值是4.
(1)抛物线的顶点坐标是(
 
 
);
(2)求该抛物线的解析式和B点的坐标;
(3)设抛物线顶点是D,求四边形AEDB的面积;
(4)若抛物线y=mx2+nx+p与上图中的抛物线关于x轴对称,请直接写出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•株洲)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,在坐标平面内找一点G,使以点G、F、C为顶点的三角形与△COE相似,请直接写出符合要求的,并在第一象限的点G的坐标;
(3)将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?

查看答案和解析>>

同步练习册答案