【题目】在平面直角坐标系中,函数()的图象G与直线交于点A(4,1),点B(1,n)(n≥4,n为整数)在直线l上.
(1)求的值;
(2)横、纵坐标都是整数的点叫做整点.记图象与直线l围成的区域(不含边界)为W.
①当n=5时,求的值,并写出区域W内的整点个数;
②若区域W内恰有5个整点,结合函数图象,求的取值范围.
【答案】(1)m=4;(2)①区域内有2个整点;②
【解析】
(1)把点A的坐标代入反比例函数解析式求解即可;
(2)①先求出当n=5时的值,然后结合函数图象解答即可;
②如图2,分别求出当n=6、n=7时k的值,再结合函数图象求出区域内的整点个数,进而可判断当n≥8时区域内的整点个数,从而可得结果.
解:(1)∵点A(4,1)在函数()的图象G上,
∴ m= 4;
(2)①当n=5时,直线经过点B(1,5),
∴ ,解得.
此时区域内有2个整点(2,3)、(3,2),如图1;
②如图2,∵直线过定点A(4,1),n为整数,
∴当n=6时,直线经过点B(1,6),解得,此时区域内有4个整点;
当n=7时,直线经过点B(1,7),解得,区域内有5个整点;
∴ 的取值范围是.
科目:初中数学 来源: 题型:
【题目】正方形的边长为4,点在对角线上(可与点重合),,点在正方形的边上.下面四个结论中,
①存在无数个四边形是平行四边形;
②存在无数个四边形是菱形;
③存在无数个四边形是矩形;
④至少存在一个四边形是正方形.
所有正确结论的序号是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象经过点点,点点是抛物线上任意一点,有下列结论:①; ②一元二次方程的两个根为和;③若,则;④对于任意实数总成立.其中正确结论的个数为 ( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校按照开展“阳光体育运动”的要求,决定主要开设:乒乓球、:篮球、:跑步:跳绳这四种运动项目.为了了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:
(1)样本中喜欢项目的人数百分比是多少?其所在扇形统计图中的圆心角的度数是多少?
(2)把条形统计图补充完整;
(3)已知该校有1000人,请根据样本估计全校喜欢乒乓球的人数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小明设计的“在已知三角形的一边上取一点,使得这点到这个三角形的另外两边的距离相等”的尺规作图过程:
已知:△ABC.
求作:点D,使得点D在BC边上,且到AB,AC边的距离相等.
作法:如图,
作∠BAC的平分线,交BC于点D.则点D即为所求.
根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形 (保留作图痕迹);
(2)完成下面的证明.
证明:作DE⊥AB于点E,作DF⊥AC于点F,
∵AD平分∠BAC,
∴ = ( ) (填推理的依据) .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张老师将自己2019年10月至2020年5月的通话时长(单位:分钟)的有关数据整理如下:
①2019年10月至2020年3月通话时长统计表
时间 | 10月 | 11月 | 12月 | 1月 | 2月 | 3月 |
时长(单位:分钟) | 520 | 530 | 550 | 610 | 650 | 660 |
②2020年4月与2020年5月,这两个月通话时长的总和为1100分钟根据以上信息,推断张老师这八个月的通话时长的中位数可能的最大值为( )
A.550B.580C.610D.630
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,函数()的图象G与直线交于点A(4,1),点B(1,n)(n≥4,n为整数)在直线l上.
(1)求的值;
(2)横、纵坐标都是整数的点叫做整点.记图象与直线l围成的区域(不含边界)为W.
①当n=5时,求的值,并写出区域W内的整点个数;
②若区域W内恰有5个整点,结合函数图象,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于点、,与轴交于点,,、两点间的距离为,抛物线的对称轴为.
(1)求抛物线的解析式;
(2)如图1,对称轴上是否存在点,使,若存在,求出点的坐标;若不存在,请说明理由.
(3)如图2,抛物线的顶点为,对称轴交轴于点,点为抛物线上一点,点不与点重合. 当时,过点分别作轴的垂线和平行线,与轴交于点、与对称轴交于点,得到矩形,求矩形周长的最大值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com