精英家教网 > 初中数学 > 题目详情

【题目】如图,BF平行于正方形ABCD的对角线AC,点E在BF上,且AE=AC,CF∥AE,则∠BCF的度数为

【答案】105°
【解析】解:过点A作AO⊥FB的延长线于点O,连接BD,交AC于点Q, ∵四边形ABCD是正方形,
∴BQ⊥AC
∵BF∥AC,
∴AO∥BQ 且∠QAB=∠QBA=45°
∴AO=BQ=AQ= AC,
∵AE=AC,
∴AO= AE,
∴∠AEO=30°,
∵BF∥AC,
∴∠CAE=∠AEO=30°,
∵BF∥AC,CF∥AE,
∴∠CFE=∠CAE=30°,
∵BF∥AC,
∴∠CBF=∠BCA=45°,
∴∠BCF=180°﹣∠CBF﹣∠CFE=180﹣45﹣30=105°.
所以答案是:105°.

【考点精析】关于本题考查的正方形的性质,需要了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】探究题

(1)理解证明:
如图1,∠MAN=90°,射线AE在这个角的内部,点B,C在∠MAN的边AM,AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明△ABD≌△CAF;
(2)类比探究:
如图2,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;
(3)如图3,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的四边相等,且面积为120cm2 , 对角线AC=24cm,则四边形ABCD的周长为(
A.52cm
B.40cm
C.39cm
D.26cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为(
A.
B.y= x+
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P关于x轴的对称点P1的坐标是(21),那么点P关于原点的对称点P2的坐标是(  )

A. ﹣1﹣2 B. 2﹣1 C. ﹣2﹣1 D. ﹣21

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个六棱柱的顶点个数、棱的条数、面的个数分别是(  )

A. 6、12、6 B. 12、18、8

C. 18、12、6 D. 18、18、24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.

(1)求∠BOD的度数;
(2)试判断∠BOE和∠COE有怎样的数量关系,说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.

(1)求证:△DCE≌△BFE;

(2)若CD=2,∠ADB=30°,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,四边形EFGH是由矩形ABCD的外角平分线围成的. 求证:四边形EFGH是正方形.

查看答案和解析>>

同步练习册答案