【题目】目前节能灯在城市已基本普及,为响应号召,某商场计划购进甲,乙两种节能灯共200只,这两种节能灯的进价、售价如下表:
进价(元/只) | 售价(元/只) | |
甲型 | 20 | 30 |
乙型 | 30 | 45 |
(1)若购进甲,乙两种节能灯共用去5200元,求甲、乙两种节能灯各进多少只?
(2)若商场准备用不多于5400元购进这两种节能灯,问甲型号的节能灯至少进多少只?
(3)在(2)的条件下,该商场销售完200只节能灯后能否实现盈利超过2690元的目标?若能请你给出相应的采购方案;若不能说明理由.
【答案】(1)甲种节能灯有80只,则乙种节能灯有120只;(2)甲型号的节能灯至少进60只;(3)有两种:当时,采购甲种型号的节能灯60台,乙种型号的节能灯140台;当时,采购甲种型号的节能灯61台,乙种型号的节能灯139台
【解析】
(1)设甲种节能灯有只,则乙种节能灯有只,根据题意列出关于x,y的二元一次方程组进行求解即可;
(2)设甲种节能灯有只,则乙种节能灯有只,根据题意列出关于m的一元一次不等式进行求解即可;
(3)根据题意可列不等式,求得m的取值范围,再结合(2)取m的整数值即可.
解:设甲种节能灯有只,则乙种节能灯有只,由题意得:
,
解得:,
答:甲种节能灯有80只,则乙种节能灯有120只;
(2)设甲种节能灯有只,则乙种节能灯有只. 根据题意得:
,
解得,,
答:甲型号的节能灯至少进60只;
(3)由题意,得
,
解得,,
∵,
∴(为整数),
∴;
相应方案有两种:当时,采购甲种型号的节能灯60台,乙种型号的节能灯140台;当时,采购甲种型号的节能灯61台,乙种型号的节能灯139台;
科目:初中数学 来源: 题型:
【题目】如图,∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=11,AC=5,则BE=______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校课外兴趣小组在本校学生中开展“感动中国2014年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:
类别 | A | B | C | D |
频数 | 30 | 40 | 24 | b |
频率 | a | 0.4 | 0.24 | 0.06 |
(1)表中的a=________,b=________;
(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;
(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】珍珍与环环两人一起做游戏,游戏规则如下:每人从1,2,3,4,5,6,7,8中任意选择一个数字,然后两人各转动一次如图所示的转盘(转盘被分为面积相等的四个扇形),两人转出的数字之和等于谁事先选择的数,谁就获胜;若两人转出的数字之和不等于她们各自选择的数,就再做一次上述游戏,直到决出胜负.若环环事先选择的数是5,用列表法或画树状图的方法,求她获胜的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场统计了每个营业员在某月的销售额,绘制了如下的条形统计图以及不完整的扇形统计图:
解答下列问题:
(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x<20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.则扇形统计图中的a=________,b=________.
(2)所有营业员月销售额的中位数和众数分别是多少?
(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得营业员的半数左右能获奖,奖励标准应定为多少万元?并简述其理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com