分析 首先证明△ABF≌△DAE(SAS),即可推出∠AFB=∠DEA,由∠D=90°,推出∠DEA+∠DAE=90°,推出∠AFB+∠DAE=90°,推出∠AMF=180°-90°=90°.
解答 证明:∵四边形ABCD是正方形,
∴∠BAD=∠ADE=90°,AD=AB=DC,
∵DF=CE,
∴AF=DE,
∵在△ABF和△DAE中,![]()
$\left\{\begin{array}{l}{AB=AD}\\{∠BAF=∠D}\\{AF=DE}\end{array}\right.$,
∴△ABF≌△DAE(SAS);
∴∠AFB=∠DEA,
∵∠D=90°,
∴∠DEA+∠DAE=90°,
∴∠AFB+∠DAE=90°,
∴∠AMF=180°-90°=90°,
∴AE⊥BF.
点评 本题考查了三角形的内角和定理,垂直定义,正方形性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4 | B. | 2$\sqrt{3}$ | C. | $\sqrt{6}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{3}$是3的平方根 | B. | |$\sqrt{2}$-1|=$\sqrt{2}$-1 | ||
| C. | -$\sqrt{5}$的相反数是$\sqrt{5}$ | D. | 带根号的数都是无理数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com