精英家教网 > 初中数学 > 题目详情

【题目】如图,在每个小正方形边长为1的方格纸中,ABC的顶点都在方格纸格点上.

1ABC的面积为   

2)将ABC经过平移后得到A′B′C′,图中标出了点B的对应点B',补全A′B′C′

3)在图中画出ABC的高CD

4)能使SABCSQBC的格点QA点除外)共有   个.

【答案】18;(2)见解析;(3)见解析;(45

【解析】

1)根据三角形面积公式直接计算即可得解;

2)根据网格结构找出点A′C′的位置,然后顺次连接即可;

3)根据三角形的高线定义作出即可;

4)根据等底等高的三角形的面积相等找出点Q即可.

解:(1SABC×4×48

故答案为:8

2)如图所示,A′B′C′即为所求;

3)如图所示,CD即为所求;

4)如图所示,能使SABCSQBC的格点QA点除外)共有5个,

故答案为:5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B=60°,接着活动学具成为图2所示正方形,并测得对角线AC=40cm,则图1中对角线AC的长为

A. 20 cm B. 30 cm C. 0 cm D. cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,点C在AOB的一边OA上,过点C的直线DE//OB,CF平分ACD,CG CF于C .

(1)若O =40,求ECF的度数;

(2)求证:CG平分OCD;

(3)当O为多少度时,CD平分OCF,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,图中二次函数解析式为y=ax2+bx+c(a≠0)则下列命题中正确的有(填序号).①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习几何的一个重要方法就是要学会抓住基本图形,让我们来做一次研究性学习.

1)如图①所示的图形,像我们常见的学习用品一圆规,我们常把这样的图形叫做规形图.请你观察规形图,试探究∠BOC与∠A、∠B、∠C之间的关系,并说明理由:

2)如图②,若ABC中,BO平分∠ABCCO平分∠ACB,且它们相交于点O,试探究∠BOC与∠A的关系;

3)如图③,若ABC中,∠ABO=ABC,∠ACO=ACB,且BOCO相交于点O,请直接写出∠BOC与∠A的关系式为    _

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置然后测出两人之间的距离颖颖与楼之间的距离在一条直线上),颖颖的身高亮亮蹲地观测时眼睛到地面的距离你能根据以上测量数据帮助他们求出住宅楼的高度吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线C1:y=x2+bx+c经过原点,与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m>0)个单位得到抛物线C2 , C2交x轴于A,B两点(点A在点B的左边),交y轴于点C.
(1)求抛物线C1的解析式及顶点坐标;
(2)以AC为斜边向上作等腰直角三角形ACD,当点D落在抛物线C2的对称轴上时,求抛物线C2的解析式;
(3)若抛物线C2的对称轴存在点P,使△ PAC为等边三角形,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.
(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.
(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.

查看答案和解析>>

同步练习册答案