精英家教网 > 初中数学 > 题目详情

已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.
(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;
(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.

(1)关系是:AD+AB=AC(1分)
证明:∵AC平分∠MAN,∠MAN=120°
∴∠CAD=∠CAB=60°
又∠ADC=∠ABC=90°,
∴∠ACD=∠ACB=30°(2分)
则AD=AB=AC(直角三角形一锐角为30°,则它所对直角边为斜边一半)(4分)
∴AD+AB=AC(5分);

(2)仍成立.
证明:过点C分别作AM、AN的垂线,垂足分别为E、F(6分)
∵AC平分∠MAN
∴CE=CF(角平分线上点到角两边距离相等)(7分)
∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°
∴∠CDE=∠ABC
又∠CED=∠CFB=90°,∴△CED≌△CFB(AAS)(10分)
∵ED=FB,∴AD+AB=AE-ED+AF+FB=AE+AF(11分)
由(1)知AE+AF=AC(12分)
∴AD+AB=AC(13分)
分析:(1)得到∠ACD=∠ACB=30°后再可以证得AD=AB=AC从而,证得结论;
(2)过点C分别作AM、AN的垂线,垂足分别为E、F,证得△CED≌△CFB后即可得到AD+AB=AE-ED+AF+FB=AE+AF,从而证得结论.
点评:本题考查了角平分线的性质、全等三角形的判定及性质、直角三角形的性质等知识,是一道比较好的综合题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、(1)在图1中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:①DC=BC;②AD+AB=AC.请你证明结论②;
(2)在图2中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

28、(1)如图,已知∠MAN=120°,AC平分∠MAN,∠ABC=∠ADC=90°,则能得到如下两个结论:①DC=BC;②AD+AB=AC. 请你证明结论②.

(2)如图,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

(3)如图3,如果D在AM的反向延长线上,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC=∠ADC,其他条件不变,(1)中的结论是否仍然成立?若成立,请直接回答;若不成立,你又能得出什么结论,直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,已知∠MAN=120°,AC平分∠MAN.B、D分别在射线AN、AM上.
(1)在图(1)中,当∠ABC=∠ADC=90°时,求证:AD+AB=AC.
(2) 若把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,如图(2)所示.则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.
(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;
(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在图1中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,
(1)求证:△ABC≌△ADC;
(2)求证:AD+AB=AC;
(3)把题中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,且DC=BC,如图2,其他条件不变,则(2)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案