精英家教网 > 初中数学 > 题目详情

【题目】如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.

(1)求出抛物线C1的解析式,并写出点G的坐标;

(2)如图2,将抛物线C1向下平移k(k0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当A′B′G′是等边三角形时,求k的值:

(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.

【答案】(1)抛物线C1的解析式为y=﹣x2+2x+3,点G的坐标为(1,4);(2)k=1;(3)M1,0)、N1,﹣1);M2,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).

【解析】

1)由点A的坐标及OC=3OA得点C坐标,将A、C坐标代入解析式求解可得;

(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′G′Dx轴于点D,设BD′=m,由等边三角形性质知点B′的坐标为(m+1,0),点G′的坐标为(1,m),代入所设解析式求解可得;

(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根据PQ=OA=1且∠AOQ、PQN均为钝角知AOQ≌△PQN,延长PQ交直线y=﹣1于点H,证OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解即可

(1)∵点A的坐标为(﹣1,0),

OA=1,

OC=3OA,

∴点C的坐标为(0,3),

A、C坐标代入y=ax2﹣2ax+c,得:

解得:

∴抛物线C1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,

所以点G的坐标为(1,4);

(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,

过点G′G′Dx轴于点D,设BD′=m,

∵△A′B′G′为等边三角形,

G′D=B′D=m,

则点B′的坐标为(m+1,0),点G′的坐标为(1,m),

将点B′、G′的坐标代入y=﹣(x﹣1)2+4﹣k,得:

解得:(舍),

k=1;

(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),

PQ=OA=1,

∵∠AOQ、PQN均为钝角,

∴△AOQ≌△PQN,

如图2,延长PQ交直线y=﹣1于点H,

则∠QHN=OMQ=90°,

又∵△AOQ≌△PQN,

OQ=QN,AOQ=PQN,

∴∠MOQ=HQN,

∴△OQM≌△QNH(AAS),

OM=QH,即x=﹣x2+2x+2+1,

解得:x=(负值舍去),

x=时,HN=QM=﹣x2+2x+2=,点M(,0),

∴点N坐标为(+,﹣1),即(,﹣1);

或(,﹣1),即(1,﹣1);

如图3,

同理可得OQM≌△PNH,

OM=PH,即x=﹣(﹣x2+2x+2)﹣1,

解得:x=﹣1(舍)或x=4,

x=4时,点M的坐标为(4,0),HN=QM=﹣(﹣x2+2x+2)=6,

∴点N的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);

综上点M1,0)、N1,﹣1);M2,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=10cm,AD=8cm,点P从点A出发沿AB以2cm/s的速度向点终点B运动,同时点Q从点B出发沿BC以1cm/s的速度向点终点C运动,它们到达终点后停止运动.

(1)几秒后,点PD的距离是点PQ的距离的2倍;

(2)几秒后,△DPQ的面积是24cm2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,正比例函数的图像与反比例函数的图像都经过点A2m).

(1)求反比例函数的解析式;

(2)B轴的上,且OA=BA,反比例函数图像上有一点C,且∠ABC=90°,求点C坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数ykx+k+1的图象与一次函数y=﹣x+4的图象交于点A1a).

1)求ak的值;

2)根据图象,写出不等式﹣x+4kx+k+1的解;

3)结合图形,当x2时,求一次函数y=﹣x+4函数值y的取值范围;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨含12吨时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元2月份用水20吨,交水费32元

1求每吨水的政府补贴优惠价和市场调节价分别是多少元;

2设每月用水量为吨,应交水费为元,写出之间的函数关系式;

3小黄家3月份用水26吨,他家应交水费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们定义:两个二次项系数之和为1,对称轴相同,且图象与y轴交点也相同的二次函数互为友好同轴二次函数例如:的友好同轴二次函数为

请你分别写出的友好同轴二次函数;

满足什么条件的二次函数没有友好同轴二次函数?满足什么条件的二次函数的友好同轴二次函数是它本身?

如图,二次函数与其友好同轴二次函数都与y轴交于点A,点B、C分别在上,点B,C的横坐标均为,它们关于的对称轴的对称点分别为,连结,CB.

,且四边形为正方形,求m的值;

,且四边形的邻边之比为1:2,直接写出a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线L1:y=﹣x2+2x+3x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,在L1上任取一点P,过点P作直线l⊥x轴,垂足为D,将L1沿直线l翻折得到抛物线L2,交x轴于点M,N(点M在点N的左侧).

(1)当L1L2重合时,求点P的坐标;

(2)当点P与点B重合时,求此时L2的解析式;并直接写出L1L2中,y均随x的增大而减小时的x的取值范围;

(3)连接PM,PB,设点P(m,n),当n= m时,求△PMB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小贤与小杰在探究某类二次函数问题时,经历了如下过程:

求解体验

(1)已知抛物线经过点(-1,0),= ,顶点坐标为 ,该抛物线关于点(0,1)成中心对称的抛物线的表达式是 .

抽象感悟

我们定义:对于抛物线,轴上的点为中心,作该抛物线关于

对称的抛物线 ,则我们又称抛物线为抛物线衍生抛物线,点衍生中心”.

(2)已知抛物线关于点的衍生抛物线为,若这两条抛物线有交点,求的取值范围.

问题解决

(3) 已知抛物线

①若抛物线的衍生抛物线为,两抛物线有两个交点,且恰好是它们的顶点,求的值及衍生中心的坐标;

②若抛物线关于点的衍生抛物线为 ,其顶点为;关于点的衍生抛物线为,其顶点为;…;关于点的衍生抛物线为,其顶点为;…(

正整数).的长(用含的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数是常数,且中的的部分对应值如下表所示,则下列结论中,正确的个数有(

时,时,的值随值的增大而减小;

方程有两个不相等的实数根.

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步练习册答案