【题目】一个正整数,由N个数字组成,若它的第一位数可以被1整除,它的前两位数可以被2整除,前三位数可以被3整除,…,一直到前N位数可以被N整除,则这样的数叫做“精巧数”.如:123的第一位数“1”可以被1整除,前两位数“12”可以被2整除,“123”可以被3整除,则123是一个“精巧数”.
(1)若四位数是一个“精巧数”,求k的值;
(2)若一个三位“精巧数”各位数字之和为一个完全平方数,请求出所有满足条件的三位“精巧数”.
【答案】(1)2或6;(2)207,225,243,261.
【解析】
(1)由四位数 是一个“精巧数”,可得1230+k是4的倍数;即可得1230+k=4n,继而可求得答案; (2)由是“精巧数”,可得a为偶数,且2+a+b是3的倍数,且2+a+b<30,又由各位数字之和为一个完全平方数,可得2+a+b=3=9,继而求得答案.
本题解析:
解:(1)∵四位数是一个“精巧数”,
∴1230+k是4的倍数;
即1230+k=4n,
当n=308时,k=2;
当n=309时,k=6,
∴k=2或6;
(2)∵是“精巧数”,
∴a为偶数,且2+a+b是3的倍数,
∵a<10,b<10,
∴2+a+b<30,
∵各位数字之和为一个完全平方数,
∴2+a+b=32=9,
∴当a=0时,b=7,
当a=2时,b=5,
当a=4时,b=3,
当a=6时,b=1,
∴所有满足条件的三位“精巧数”有:207,225,243,261.
科目:初中数学 来源: 题型:
【题目】已知直线和直线
不论为何值,直线恒交于一定点,求点坐标;
当时,设直线与轴围成的三角形的面积分别为, 求.
设直线交轴为点,交轴为点,原点为的面积为.
求①当时直线的条数各是多少;
②当且时的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战
士们离营地的距离与时间之间函数关系的是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在证明“有两个角相等的三角形是等腰三角形”这一命题时, 画出图形,写出“己知”、“求证”(如图),他对 辅助线描述如下:“过点A作BC的中垂线AD,垂足为D”.
(1)请你简要说明小明的辅助线作法错在哪里?
(2)请你正确完整地写出这一命题的证明过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点C1在边BC上,将△C1CD绕点D顺时针旋转90°得到△A1AD.A1F平分∠BA1C1,交BD于点F,过点F作FE⊥A1C1,垂足为E,当A1E=3,C1E=2时,则BD的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:有两条边长的比值为的直角三角形叫做“魅力三角形”我们知道,命题“直角三角形30°角所对的直角边等于斜边的一半”是一个真命题,所以“含30°角的直角三角形”就是一个“魅力三角形”
(1)设“魅力三角形”较短直角边为a,较长直角边为b,请你直接写出的值.
(2)如图,在Rt△ABC中,∠B=90°,BC=6,D是AB的中点,点E在CD上,满足AD=DE,连结AE,过点D作DF∥AE交BC于点F
①如果点E是CD的中点,求证:△BDF是“魅力三角形”
②如果△BDF是“魅力三角形”,且BF=BC,求线段AC的长
(二次根式运算提示:()2=n2()2=n2a,比如:(4)2=42()2=16×3=48)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高3米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有27米的距离(B,F,C在一条直线上).
(1)求办公楼AB的高度;
(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.
(参考数据:sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知P(﹣3,m)和 Q(1,m)是抛物线y=x2+bx﹣3上的两点.
(1)求b的值;
(2)将抛物线y=x2+bx﹣3的图象向上平移k(是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值;
(3)将抛物线y=x2+bx﹣3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y=x+n与这个新图象有两个公共点时,求n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,则AM= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com