精英家教网 > 初中数学 > 题目详情

如图,△ABC中,∠A、∠B、∠C所对的三边分别记为a,b,c,O是△ABC的外心,OD⊥BC,OE⊥AC,OF⊥AB,则OD:OE:OF=


  1. A.
    a:b:c
  2. B.
    数学公式
  3. C.
    cosA:cosB:cosC
  4. D.
    sinA:sinB:sinC
C
分析:设三角形的外接圆的半径是R,根据垂径定理,在直角△OBD中,利用三角函数即可用外接圆的半径表示出OD的长,同理可以表示出OE,OF的长,即可求解.
解答:解:设三角形的外接圆的半径是R.
连接OB,OC.
∵O是△ABC的外心,且OD⊥BC.
∴∠BOD=∠COD=∠A
在直角△OBD中,OD=OB•cos∠BOD=R•cosA.
同理,OE=R•cosB,OF=R•cosC.
∴OD:OE:OF=cosA:cosB:cosC.
故选C.
点评:本题主要考查了三角形的外心的性质,正确利用垂径定理,转化为直角三角形的问题是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案