【题目】将两块斜边长相等的等腰直角三角板按如图①摆放,斜边AB分别交CD,CE于M,N点.
(1)如果把图①中的△BCN绕点C逆时针旋转90°得到△ACF,连接FM,如图②,求证:△CMF≌△CMN;
(2)将△CED绕点C旋转,则:
①当点M,N在AB上(不与点A,B重合)时,线段AM,MN,NB之间有一个不变的关系式,请你写出这个关系式,并说明理由;
②当点M在AB上,点N在AB的延长线上(如图③)时,①中的关系式是否仍然成立?
【答案】(1)见解析;(2)①见解析;②仍然成立.
【解析】
(1)根据旋转的性质可得CF=CN,∠ACF=∠BCN,再求出∠ACM+∠BCN=45°,从而求出∠MCF=45°,然后利用“边角边”证明△CMF和△CMN全等即可;
(2)①根据全等三角形对应边相等可得FM=MN,再根据旋转的性质可得AF=BN,∠CAF=∠B=45°,从而求出∠BAF=90°,再利用勾股定理列式即可得解;
②把△BCN绕点C逆时针旋转90°得到△ACF,根据旋转的性质可得AF=BNCF=CN,∠BCN=∠ACF,再求出∠MCF=∠MCN,然后利用“边角边”证明△CMF和△CMN全等,根据全等三角形对应边相等可得MF=MN,然后利用勾股定理列式即可得解.
(1)∵△BCN绕点C逆时针旋转90°得到△ACF,
∴CF=CN,∠ACF=∠BCN,
∵∠DCE=45°,
∴∠ACM+∠BCN=45°,
∴∠ACM+∠ACF=45°,
即∠MCF=45°,
∴∠MCF=∠MCN,
在△CMF和△CMN中,
,
∴△CMF≌△CMN(SAS);
(2)①∵△CMF≌△CMN,
∴FM=MN,
又∵∠CAF=∠B=45°,
∴∠FAM=∠CAF+∠BAC=45°+45°=90°,
∴AM2+AF2=FM2,
∴AM2+BN2=MN2;
②如图,把△BCN绕点C逆时针旋转90°得到△ACF,
则AF=BN,CF=CN,∠BCN=∠ACF,
∵∠MCF=∠ACB-∠MCB-∠ACF=90°-(45°-∠BCN)-∠ACF=45°+∠BCN-∠ACF=45°,
∴∠MCF=∠MCN,
在△CMF和△CMN中,
,
∴△CMF≌△CMN(SAS),
∴FM=MN,
∵∠ABC=45°,
∴∠CAF=∠CBN=135°,
又∵∠BAC=45°,
∴∠FAM=∠CAF-∠BAC=135°-45°=90°,
∴AM2+AF2=FM2,
∴AM2+BN2=MN2.
科目:初中数学 来源: 题型:
【题目】我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.
例如:
(a+b)0=1
(a+b)1=a+b
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
(a+b)4=a4+4a3b+6a2b2+4ab3+b4
…
请你猜想(a+b)9的展开式中所有系数的和是( )
A.2018B.512C.128D.64
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)操作:如图,在已知内角度数的三个三角形中,请用直尺从某一顶点画一条线段,把原三角形分割成两个等腰三角形,并在图中标注相应的角的度数
(2)拓展,△ABC中,AB=AC,∠A=45°,请把△ABC分割成三个等腰三角形,并在图中标注相应的角的度数.
(3)思考在如图所示的三角形中∠A=30°.点P和点Q分别是边AC和BC上的两个动点.分别连接BP和PQ把△ABC分割成三个三角形.△ABP,△BPQ,△PQC若分割成的这三个三角形都是等腰三角形,求∠C的度数所有可能值直接写出答案即可.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,四边形中,,,点分别在边上,且,求证:.
(2)如图2,四边形中,,点在边上,连接,平分交于点,,,连接.
①找出图中与相等的线段,并加以证明;
②求的度数(用含的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,A(﹣3,4),B(﹣4,1),C(﹣1,1)
(1)在图中作出△ABC关于x轴的轴对称图形△A′B′C′;
(2)直接写出A,B关于y轴的对称点A″,B″的坐标;
(3)求△ABC关于y轴的轴对称图形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形(长方形)沿折叠,使点与点重合,点落在处,连接,,则下列结论:①,②,③,④,,三点在同一直线上,其中正确的是( )
A.①②③B.①③④C.②③④D.①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线分别交轴、轴于点,点,且、满足.
(1)求,的值;
(2)以为边作,点在直线的右侧且,求点的坐标;
(3)若(2)的点在第四象限(如图2),与交于点,与轴交于点,连接,过点作交轴于点.
①求证;
②直接写出点到的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是边长为6的等边三角形,是边上一动点,由向运动(与、不重合),是延长线上一动点,与点同时以相同的速度由向延长线方向运动(不与重合),过作于,连接交于.
(1)当时,求的长;
(2)在运动过程中线段的长是否发生变化?如果不变,求出线段的长;如果发生改变,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①;②AG=GC;③BE+DF=EF;④.其中正确的是( )
A.①②③B.①③④C.①②④D.①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com