精英家教网 > 初中数学 > 题目详情

【题目】设棱锥的顶点数为V,面数为F,棱数为E.

(1)观察与发现:三棱锥中,V3=   ,F3=   ,E3=   

五棱锥中,V5=   ,F5=   ,E5=   

(2)猜想:十棱锥中,V10=   ,F10=   ,E10=   

n棱锥中,Vn=   ,Fn=   ,En=   ;(用含有n的式子表示)

(3)探究:棱锥的顶点数(V)与面数(F)之间的等量关系:   

棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E=   

(4)拓展:棱柱的顶点数(V)、面数(F)、棱数(E)之间是否也存在某种等量关系?若存在,试写出相应的等式;若不存在,请说明理由.

【答案】(1)4466610;(2111120n+1n+12n;(3V=FV+F2.(4)V+F﹣E=2.

【解析】

(1)观察与发现:根据三棱锥、五棱锥的特征填写即可;
(2)猜想:根据十棱锥的特征填写即可;
②根据n棱锥的特征的特征填写即可;
(3)探究:通过列举得到棱锥的顶点数(V)与面数(F)之间的等量关系;
通过列举得到棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系;
(4)拓展:根据棱柱的特征得到棱柱的顶点数(V)、面数(F)、棱数(E)之间的等量关系.

解:(1)观察与发现:三棱锥中,V3=4,F3=4,E3=6;

五棱锥中,V5=6,F5=6,E5=10;

2)猜想:①十棱锥中,V10=11,F10=11,E10=20

②n棱锥中,Vn=n+1Fn=n+1En=2n;(用含有n的式子表示)

3)探究:①棱锥的顶点数(V)与面数(F)之间的等量关系:V=F;

②棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E=V+F﹣2;

4)拓展:棱柱的顶点数(V)、面数(F)、棱数(E)之间也存在某种等量关系,相应的等式是:V+F﹣E=2.

故答案为:4,4,6;6,6,10;11,11,20;n+1,n+1,2n;V=F,V+F﹣2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时。其它主要参考数据如下:

运输工具

途中平均速度(千米/时)

运费(元/千米)

装卸费用(元)

火车

100

15

2000

汽车

80

20

900

(1)如果汽车的总支出费用比火车费用多1100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答

(2)如果A市与某市之间的距离为S千米,且知道火车与汽车在路上耽误的时间分别为2小时和3.1小时,你若是某市水果批发部门的经理,要将这种水果从A市运往本市销售。你将选择哪种运输方式比较合算呢?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点E、F分别在直线AB,CD上,点P在AB、CD之间,连结EP、FP,如图1,过FP上的点G作GH∥EP,交CD于点H,且∠1=∠2.

(1)求证:AB∥CD;

(2)如图2,将射线FC沿FP折叠,交PE于点J,若JK平分∠EJF,且JK∥AB,则∠BEP与∠EPF之间有何数量关系,并证明你的结论;

(3)如图3,将射线FC沿FP折叠,将射线EA沿EP折叠,折叠后的两射线交于点M,当EM⊥FM时,求∠EPF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠DBC=90°,AB=9,AD=12,BC=8,DC=17,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M从点A出发,沿AC的方向匀速运动,同时直线PQ由点B出发,沿BA的方向匀速运动,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t≤5).线段CM的长度记作y , 线段BP的长度记作y , y和y关于时间t的函数变化情况如图所示.

(1)由图2可知,点M的运动速度是每秒 cm,当t为何值时,四边形PQCM是平行四边形?在图2中反映这一情况的点是
(2)设四边形PQCM的面积为ycm2 , 求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形PQCM= SABC?若存在,求出t的值;若不存在,说明理由;
(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB10AC2BC边上的高AD6,则另一边BC等于_______

【答案】106

【解析】试题解析:根据题意画出图形,如图所示,

如图1所示,AB=10,AC=2AD=6,

在RtABD和RtACD中,

根据勾股定理得:BD==8,CD==2,

此时BC=BD+CD=8+2=10;

如图2所示,AB=10,AC=2AD=6,

在RtABD和RtACD中,

根据勾股定理得:BD==8,CD==2,

此时BC=BD-CD=8-2=6,

BC的长为6或10.

型】填空
束】
12

【题目】在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1 ______ y2.(填“>”“<”或“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】①在数轴上没有点能表示+1;②无理数是开不尽方的数;③存在最小的实数;④4的平方根是±2,用式子表示是=±2;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中正确的是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x﹣2与反比例函数y= 的图像交于点A(3,1)和点B.
(1)求k的值及点B的坐标;
(2)若点P是坐标平面内一点,且以A,O,B,P为顶点构成一个平行四边形,请你直接写出该平行四边形对角线交点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线ACBD交于点OBE平分∠ABCAC于点F,交AD于点E,且∠DBF=15°,求证:(1AO=AE; (2)FEO的度数.

查看答案和解析>>

同步练习册答案