精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,抛物线y=x2+bx+c的图象与x轴交于点A(2,0)、B(﹣4,0),与y轴交于点D.

(1)求抛物线的解析式;

(2)连接BD,点P在抛物线的对称轴上,以Q为平面内一点,四边形PBQD能否成为矩形?若能,请求出点P的坐标;若不能,请说明理由;

(3)在抛物线上有一点M,过点M、A的直线MA交y轴于点C,连接BC,若∠MBO=∠BCO,请直接写出点M的坐标.

【答案】(1)y=x2+x﹣4;(2)满足条件的P的坐标为(﹣1,﹣2+)或(﹣1.﹣2﹣);(3)满足条件的点M坐标(﹣2,﹣4)或(0,﹣4)或(﹣1+,4).

【解析】(1)、利用待定系数法求出函数解析式;(2)、分BD为矩形的边和BD为矩形的对角线两种情况分别求出点P的坐标;(3)、设Mmm2+m4),设直线AM的解析式为y=kx+b,然后求出直线AM的解析式,然后分点M所在的象限,证明出MNB和△BOC相似,从而分别得出点M的坐标.

(1)、由题意解得∴抛物线的解析式为y=x2+x﹣4.

(2)如图1中,当BD为矩形的边时,∵直线BD的解析式为y=﹣x﹣4,

∴直线BP的解析式为y=x=4,直线 DP′的解析式为y=x﹣4,

可得P(﹣1,3),P′(﹣1,﹣5).

BD为矩形的对角线时,设P(﹣1,m),BD的中点N(﹣2,﹣2),由BN=P″N,

可得12+(m+2)2=(22解得m=﹣2+或﹣2﹣

∴P″(﹣1,﹣2+),或(﹣1.﹣2﹣),

∴要使四边形PBQD能成为矩形,满足条件的点P坐标为(﹣1,﹣2+)或(﹣1.﹣2﹣).

综上所述,满足条件的P的坐标为(﹣1,﹣2+)或(﹣1.﹣2﹣).

(3)设M(m,m2+m﹣4),设直线AM的解析式为y=kx+b,则有

解得∴直线AM的解析式为y=x﹣m﹣4,∴C(0,﹣m﹣4).

①点M在第二象限显然不可能,当点M在第三象限时,如图2中,作MN⊥OBN.

∵∠MBN=∠BCO,∠MNB=∠BOC=90°,∴△MNB∽△BOC,∴

=,∴m=﹣20.∴M(﹣2,﹣4)或(0,﹣4).

②当点M在第一象限时,同法可得=整理得:m2+2m﹣16=0,

∴m=﹣1+或﹣1﹣(舍弃),∴M(﹣1+,4),

③当点M在第四象限时,不存在,

综上所述,满足条件的点M坐标(﹣2,﹣4)或(0,﹣4)或(﹣1+,4).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小苏和小林在如图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是(

A. 两人从起跑线同时出发,同时到达终点

B. 小苏跑全程的平均速度大于小林跑全程的平均速度

C. 小苏前15s跑过的路程大于小林前15s跑过的路程

D. 小林在跑最后100m的过程中,与小苏相遇2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,直线与抛物线交于两点,其中,.该抛物线与轴交于点,轴交于另一点.

(1)的值及该抛物线的解析式;

(2)如图2.若点为线段上的一动点(不与重合).分别以为斜边,在直线的同侧作等腰直角和等腰直角,连接,试确定面积最大时点的坐标.

(3)如图3.连接,在线段上是否存在点,使得以为顶点的三角形与相似,若存在,请直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,图1中面积为1的正方形有9个,图2中面积为1的正方形有14个,,按此规律,图12中面积为1的正方形的个数为  

A.64B.60C.54D.50

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形纸片 ABCDADBC,将长方形纸片折叠, 使点 D 与点 B 重合,点 C 落在点 C'处,折痕为 EF

(1)求证:BE=BF

(2)ABE=18°,求BFE 的度数.

(3) AB=4,AD=8,求 AE 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为﹣6,点B在数轴上A点右侧,且AB14,动点M从点A出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为tt0)秒.

1)写出数轴上点B表示的数   ,点M表示的数   (用含t的式子表示);

2)动点N从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点MN同时出发,问点M运动多少秒时追上点N

3)若PAM的中点,FMB的中点,点M在运动过程中,线段PF的长度是否发生变化?若变化,请说明理由;若不变,请求出线段PF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗. 我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用ABCD表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整) 请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?

(2)将两幅不完整的图补充完整;

(3)若居民区有8000人,请估计爱吃D粽的人数;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD的顶点AD分别落在x轴、y轴,OD=2OA=6ADAB=31.则点B的坐标是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD的右侧作等腰直角三角形ADE,∠DAE90°,ADAE

1)如果ABAC,∠BAC90°.①当点D在线段BC上时,如图1,线段CEBD的位置关系为___________,数量关系为___________

②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.

2)如图3,如果ABAC,∠BAC90°,点D在线段BC上运动。探究:当∠ACB多少度时,CEBC?请说明理由.

查看答案和解析>>

同步练习册答案