精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在ABC中,AB﹦AC,BD、CE分别是所在角的平分线,ANBDN点,AMCEM点。求证:AM﹦AN

【答案】见解析

【解析】

利用等边对等角证明∠ABC﹦∠ACB,根据角平分线证明∠ABD﹦∠ACE,由垂直证明Rt△AMC≌Rt△ANB(AAS),即可得到AM﹦AN.

证明:∵AB﹦AC(已知)

∴∠ABC﹦∠ACB(等边对等角)

∵BD、CE分别平分∠ABC、∠ACB(已知)

∴∠ABD﹦∠ACE

∵AM⊥CE, AN⊥BD(已知)

∴∠AMC﹦∠ANB﹦900(垂直的定义)

Rt△AMCRt△ANB

∠AMC﹦∠ANB, ∠ACM﹦∠ABN, AC﹦AB

∴Rt△AMC≌Rt△ANB(AAS)

∴AM﹦AN

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】⑴如图1,点M、N分别在∠AOB的边OA、OB上,且OM=ON,过点M、N分别作MPOA、NPOB,MP、NP交于P,E、F分别为线段MP、NP上的点,且∠EOF=AOB,延长PMS,使MS=NF,连接OS,则∠EOF与∠EOS的数量关系为 ,线段NF、EM、EF的数量关系为

⑵如图2,点M、N分别在∠AOB的边OA、OB上,且OM=ON,, E、F分别为线段MP、NP上的点,且∠EOF=AOB,⑴中的线段NF、EM、EF的数量关系是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明。

⑶如图3,点M、N分别在∠AOB的边OA、OB上,且OM=ON,, E、F分别为线段PM、NP延长线上的点,且∠EOF=AOB,⑴中的线段NF、EM、EF的数量关系是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某校八、九年级部分学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如图的统计图表:
睡眠情况分段情况如下

组别

睡眠时间x(小时)

A

4.5≤x<5.5

B

5.5≤x<6.5

C

6.5≤x<7.5

D

7.5≤x<8.5

E

8.5≤x<9.5

根据图表提供的信息,回答下列问题:
(Ⅰ)直接写出统计图中a的值
(Ⅱ)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地雪灾发生之后,灾区急需帐篷。某车间的甲、乙两名工人分别同时生产同种帐篷上的同种零件,他们一天生产零件y(个)与生产时间t(时)的函数关系如图所示。

①甲、乙中______先完成一天的生产任务;在生产过程中,______因机器故障停止生产______小时。

②当t=______时,甲、乙生产的零件个数相等。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图,因为直线ABCD相交于点PABEF,所以CD不平行于EF(________________________________________________________)

(2)因为直线abbc,所以ac(________________________________)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等. 那么在什么情况下,它们会全等?

1)阅读与证明:

对于这两个三角形均为直角三角形,显然它们全等.

对于这两个三角形均为钝角三角形,可证它们全等(证明略).

对于这两个三角形均为锐角三角形,它们也全等,可证明如下:

已知:ABCA1B1C1均为锐角三角形,ABA1B1BCB1C1CC1.

求证:ABC≌△A1B1C1. (请你将下列证明过程补充完整)

证明:分别过点BB1BDCADB1D1C1A1D1.

BDCB1D1C190°

BCB1C1CC1

∴△BCD≌△B1C1D1

BDB1D1.

______________________________

2)归纳与叙述:

由(1)可得到一个正确结论,请你写出这个结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:

3+22+2+1()2+2+1(+1)2

5+22+2+3()2+2××+()2(+)2

(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:

①4+2②6+4

(2)a+4(m+n)2,且amn都是正整数,试求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.
(1)求证:∠FEB=∠ECF;
(2)若BC=6,DE=4,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某重点中学校团委、学生会发出倡议,在初中各年级捐款购买书籍送给我市贫困地区的学校.初一年级利用捐款买甲、乙两种自然科学书籍若干本,用去5324元;初二年级买了A、B两种文学书籍若干本,用去4840元,其中A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同.若甲、乙两种书的单价之和为121元,则初一和初二两个年级共向贫困地区的学校捐献了________本书.

查看答案和解析>>

同步练习册答案