精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.
(1)求证:∠FEB=∠ECF;
(2)若BC=6,DE=4,求EF的长.

【答案】
(1)证明:∵CB,CD分别切⊙O于点B,D,

∴OC平分∠BCE,即∠ECO=∠BCO,OB⊥BC,

∴∠BCO+∠COB=90°,

∵EF⊥OG,

∴∠FEB+∠FOE=90°,

而∠COB=∠FOE,

∴∠FEB=∠ECF;


(2)解:连接OD,如图,

∵CB,CD分别切⊙O于点B,D,

∴CD=CB=6,OD⊥CE,

∴CE=CD+DE=6+4=10,

在Rt△BCE中,BE= =8,

设⊙O的半径为r,则OD=OB=r,OE=8﹣r,

在Rt△ODE中,r2+42=(8﹣r)2,解得r=3,

∴OE=8﹣3=5,

在Rt△OBC中,OC= =3

∵∠COB=∠FOE,

∴△OEF∽△OCB,

= ,即 =

∴EF=2


【解析】(1)利用切线长定理得到OC平分∠BCE,即∠ECO=∠BCO,利用切线的性质得OB⊥BC,则∠BCO+∠COB=90°,由于∠FEB+∠FOE=90°,∠COB=∠FOE,所以∠FEB=∠ECF;(2)连接OD,如图,利用切线长定理和切线的性质得到CD=CB=6,OD⊥CE,则CE=10,利用勾股定理可计算出BE=8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,根据勾股定理得r2+42=(8﹣r)2 , 解得r=3,所以OE=5,OC=3 ,然后证明△OEF∽△OCB,利用相似比可计算出EF的长.
【考点精析】认真审题,首先需要了解勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2),还要掌握垂径定理(垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一次函数ykx+b的图象如图所示,

(1)求出这个函数关系式.

(2)图象上有一点P(4,m),求m的值.

(3)判断点(﹣4,3)和 (6,﹣6)是否在此直线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在ABC中,AB﹦AC,BD、CE分别是所在角的平分线,ANBDN点,AMCEM点。求证:AM﹦AN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知EF∥GH,A、DGH上的两点,M、BEF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的内接正多边形的一边,已知∠OAB=70°,则这个正多边形的内角和为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各数分别填入相应的集合内:

﹣2.5,0,8,﹣2,, ﹣0.5252252225…(每两个5之间依次增加12).

(1)正数集合:{ …};

(2)负数集合:{ …};

(3)整数集合:{ …};

(4)无理数集合:{ …}.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C是线段AB的中点,D是线段AB的五等分点,若CD=6cm.

1)求线段AB的长;

2)若AE=DE,求线段EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某重点中学校团委、学生会发出倡议,在初中各年级捐款购买书籍送给我市贫困地区的学校.初一年级利用捐款买甲、乙两种自然科学书籍若干本,用去5324元;初二年级买了A、B两种文学书籍若干本,用去4840元,其中A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同.若甲、乙两种书的单价之和为121元,则初一和初二两个年级共向贫困地区的学校捐献了________本书.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门.乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.

(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量x的取值范围.

(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由.

查看答案和解析>>

同步练习册答案