精英家教网 > 初中数学 > 题目详情
11.已知点A(m-1,2),点B(3,2m),且AB∥y轴,则点B的坐标为(3,8).

分析 根据点A(m-1,2),点B(3,2m),且AB∥y轴,可知点A、B的横坐标相等,从而可以解答本题.

解答 解:∵点A(m-1,2),点B(3,2m),且AB∥y轴,
∴m-1=3.
得,m=4.
∴2m=8.
∴点B的坐标为(3,8).
故答案为:(3,8).

点评 本题考查坐标与图形的性质,解题的关键是明确如果一条线段与y轴平行,则这条线段上的所有点的横坐标相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.(1)已知:A=$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+…$\frac{1}{\sqrt{99}+\sqrt{100}}$,B=$\frac{1}{\sqrt{2}+2\sqrt{1}}$+$\frac{1}{2\sqrt{3}+3\sqrt{2}}$+$\frac{1}{3\sqrt{4}+4\sqrt{3}}$+…$\frac{1}{99\sqrt{100}+100\sqrt{99}}$,求A-B的值?
(2)解方程组:$\left\{\begin{array}{l}{xy=2x+y-1}\\{yz=2z+3y-8}\\{zx=4z+3x-8}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.若$\sqrt{x+3}$=2$\sqrt{3}$,则$\sqrt{x}$=3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度与M、N重合,过角尺顶点C作射线OC.那么判定△MOC≌△NOC的依据是(  )
A.边角边B.边边边C.角边角D.角角边

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.作图题:
(1)尺规作图画∠A的角平分线.
(2)尺规作图画出AC边的中线.
(3)用三角尺作图画出AB边上的高线.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,对任意的五角星,结论正确的是(  )
A.∠A+∠B+∠C+∠D+∠E=90°B.∠A+∠B+∠C+∠D+∠E=180°
C.∠A+∠B+∠C+∠D+∠E=270°D.∠A+∠B+∠C+∠D+∠E=360°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)如图(1),已知,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.求∠DAE的度数;  
(2)如图(2),已知AF平分∠BAC,交边BC于点E,过F作FD⊥BC,若∠B=x°,∠C=(x+36)°,
①∠CAE=72°-x°(含x的代数式表示)
②求∠F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知:PD与⊙O相切于点A,点O在∠DPE的平分线上,求证:PE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若菱形ABCD的两对角线AC、BD的长是一元二次方程x2-65x+360=0的两个实数根,则菱形ABCD的面积为180.

查看答案和解析>>

同步练习册答案