【题目】如图1,已知抛物线C1:与x轴的正半轴交于点A,点B为抛物线的顶点,直线l:是一条动直线.
(1)求点A、点B的坐标;
(2)当直线l经过点A时,求出直线l的解析式,并直接写出此时当时,自变量x的取值范围;
(3)如图2,将抛物线C1在x轴上方的部分沿x轴翻折,与C1在x轴下方的图形组合成一个新的图形C2,当直线l与组合图形C2有且只有两个交点时,直接写出k的取值范围.
【答案】(1)A(2, 0),B(1,3);(2)x>2或x<;(3)或k<0
【解析】
(1)公式法可求得A点B点坐标;
(2)A点代入直线,可求得其解析式,联立y1,y2,可求得直线解析式,结合图象,可求得符合要求的x的取值范围;
(3)结合图象观察,或k<0时,只有两个交点.
(1)令y=0则,
解得: ,
∴A(2, 0),
∵,
当x=1时,y=3,
∴B(1,3)
(2)将A(2,0)代入中,
∴直线解析式为:,
联立两函数,则两图像另一交点为(-,-),
结合图象,当时,
x>2或x<;
(3)由图象可知,当直线经过A点时,恰有三个交点,
当直线向上运动时,只有两个交点,
∴时,恰有两个交点;
当k<0时,正好有两个交点,满足条件,
∴或k<0.
科目:初中数学 来源: 题型:
【题目】如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:
①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.
其中正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了运送防疫物资,甲、乙两货运公司各派出一辆卡车,分别从距目的地240千米和270千米的两地同时出发,驰援疫区.已知乙公司卡车的平均速度是甲公司卡车的平均速度的1.5倍,甲公司的卡车比乙公司的卡车晚1小时到达目的地,分别求甲、乙两货运公司卡车的平均速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?
(2)请把条形统计图补充完整;
(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“世界读书日”前夕,某校开展了“读书助我成长”的阅读活动.为了了解该校学生在此次活动中课外阅读书籍的数量情况,随机抽取了部分学生进行调查,将收集到的数据进行整理,绘制出两幅不完整的统计图,请根据统计图信息解决下列问题:
(1)求本次调查中共抽取的学生人数;
(2)补全条形统计图;
(3)在扇形统计图中,阅读本书籍的人数所在扇形的圆心角度数是 ;
(4)若该校有名学生,估计该校在这次活动中阅读书籍的数量不低于本的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB于点E,DF∥AB交边AC于点F.
(1)如图1,试判断四边形AEDF的形状,并说明理由;
(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.
(i)求ENEG的值;
(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解密数学魔术:魔术师请观众心想一个数,然后将这个数按以下步骤操作:
魔术师能立刻说出观众想的那个数.
(1)如果小玲想的数是,请你通过计算帮助她告诉魔术师的结果;
(2)如果小明想了一个数计算后,告诉魔术师结果为85,那么魔术师立刻说出小明想的那个数是:__________;
(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数.若设观众心想的数为,请你按照魔术师要求的运算过程列代数式并化简,再用一句话说出这个魔术的奥妙.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点是边长为的正方形的对角线上的动点,过点分别作于点于点,连接并延长,交射线于点交射线于点,连接交于点当点在上运动时(不包括两点),以下结论:①;②;③;④的最小值是.其中正确的是_______.(把你认为正确结论的序号都填上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP,AE.
(1)求证:直线PQ为⊙O的切线;
(2)若直径AB的长为4.
①当PE= 时,四边形BOPQ为正方形;
②当PE= 时,四边形AEOP为菱形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com