精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,点CAB中点,CDBECDBE

1)求证:△ACD≌△CBE

2)若∠D35°,求∠DCE的度数.

【答案】(1)详见解析;(2)∠DCE35°.

【解析】

1)根据平行线的性质可得∠ACD=∠B,由中点的定义可得AC=BC,利用SAS即可证明ACD≌△CBE;(2)由全等三角形的性质可得∠A=BCE,即可证明CE//AD,根据平行线的性质可得∠DCE=D,即可得答案.

1)∵CAB的中点,

ACBC

CDBE

∴∠ACD=∠B

ACDCBE中,

∴△ACD≌△CBESAS).

2)∵△ACD≌△CBE

∴∠A=∠BCE

ADCE

∴∠DCE=∠D

∵∠D35°

∴∠DCE35°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在综合与实践课上,同学们以“一个含的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线和直角三角形.

操作发现:

1)在如图1中,,求的度数;

2)如图2,创新小组的同学把直线向上平移,并把的位置改变,发现,说明理由;

实践探究:

3)缜密小组在创新小组发现结论的基础上,将如图中的图形继续变化得到如图,平分,此时发现又存在新的数量关系,请直接写出的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,点 M 是正方形 ABCD 的边 BC 上一点,点 N 是 CD 延长线上一点, 且BM=DN,则线段 AM 与 AN 的关系.

(2)如图②,在正方形 ABCD 中,点 E、F分别在边 BC、CD上,且∠EAF=45°,判断 BE,DF,EF 三条线段的数量关系,并说明理由.

(3)如图③,在四边形 ABCD中,AB=AD,∠BAD=90°,∠ABC+∠ADC=180°,点E、F分别在边 BC、CD 上,且∠EAF=45°,若 BD=5,EF=3,求四边形 BEFD 的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按元销售时,每天可销售个;若销售单价每降低元,每天可多售出个.已知每个玩具的固定成本为元,问这种玩具的销售单价为多少元时,厂家每天可获利润元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1=∠2=90°,AD=AE,那么图中有_____对全等三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交ACAB边于EF若点DBC边的中点,点M为线段EF上一动点,则周长的最小值为  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=(x0)的图象上,顶点B在函数y2=(x0)的图象上,ABO=30°,则=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知正比例函数yx的图象与反比例函数y的图象交于Aa,-2),B两点.

1)求反比例函数的表达式和点B的坐标;

2P是第一象限内反比例函数图象上一点,过点Py轴的平行线,交直线AB于点C,连接PO,若POC的面积为3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y= (x>0)的图像经过点D,P是一次函数y=kx+3-3k(k≠0)的图像与该反比例函数图像的一个公共点.

(1)求反比例函数的表达式;

(2)通过计算说明一次函数y=kx+3-3k(k≠0)的图像一定经过点C;

(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).

查看答案和解析>>

同步练习册答案