精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AC=BC=5,AB=6,将它沿AB翻折得到△ABD,点P、E、F分别为线段AB、AD、DB的任意点,则PE+PF的最小值是________

【答案】

【解析】

根据题意证明四边相等即可得出菱形E关于AB的对称点E' ,连接E'FAB于点P,ABA于点P, E'FAC,BD之间的距离时,E'F为最小.过点BBH⊥AC于点H,求出BH的长即可.

AD=BD=AC= BC,∴四边形ADBC是菱形;

如解图,E关于AB的对称点E' ,根据菱形的对称性可知点E'AC连接E'FAB于点P,PE+PF=PE' +PF=E'F,E'FAC,BD之间的距离时,E'F为最小.过点BBH⊥AC于点H,AH=x,CH=5 -x,AB2-AH2 =BH2=BC2-CH262 –x2 =25-(5-x)2解得x=,∴BH =,PE + PF的最小值为.故答案为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】点P从点O出发,按逆时针方向沿周长为l的图形运动一周,O,P两点间的距离y与点P走过的路程x的函数关系如图,那么点P所走的图形是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=45°,点M,N在边OA上,OM=3,ON=7,点P直线OB上的点,要使点P,M,N构成等腰三角形的点P________个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x,y定义一种新运算T,规定T(x,y)=(其中a,b是非零常数,且x+y≠0),这里等式右边是通常的四则运算.

如:T(3,1)=,T(m,﹣2)=

(1)填空:T(4,﹣1)=   (用含a,b的代数式表示);

(2)T(﹣2,0)=﹣2T(5,﹣1)=6.

①求ab的值;

②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线上,且,,之间的距离为2 , ,之间的距离为3 ,则AC2= _______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在ABC中,∠A=90°,AB=AC,点DBC的中点.

(1)如图①,若点E、F分别为AB、AC上的点,且DEDF,求证:BE=AF;

(2)若点E、F分别为AB、CA延长线上的点,且DEDF,那么BE=AF吗?请利用图②说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于AB两点,则线段AB的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣3a(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),连接BC.

(1)求该抛物线的解析式和对称轴,并写出线段BC的中点坐标;
(2)将线段BC先向左平移2个单位长度,再向下平移m个单位长度,使点C的对应点C1恰好落在该抛物线上,求此时点C1的坐标和m的值;
(3)若点P是该抛物线上的动点,点Q是该抛物线对称轴上的动点,当以P,Q,B,C四点为顶点的四边形是平行四边形时,求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在锐角三角形ABC直线lBC的中垂线射线m为∠ABC的角平分线直线lm相交于点P.若∠BAC=60°,ACP=24°,则∠ABP的度数是( )

A. 24° B. 30° C. 32° D. 36°

查看答案和解析>>

同步练习册答案