【题目】某社区购买甲、乙两种树苗进行绿化,购买一棵甲种树苗的价钱比购买一棵乙种树苗的价钱多 10 元钱,已知购买 20 棵甲种树苗、30 棵乙种树苗共需 1 200 元钱.
(1)求购买一棵甲种、一棵乙种树苗各多少元?
(2)社区决定购买甲、乙两种树苗共 400 棵,总费用不超过 10 600 元,那么该社区最多可以购买多少棵甲种树苗?
【答案】(1)购买一棵甲种树苗需30元,购买一棵乙种树苗需20元;(2)该社区最多可以购买260棵甲种树苗.
【解析】
(1)设出未知数,根据“一棵甲种树苗的价钱比购买一棵乙种树苗的价钱多10元钱;购买 20棵甲种树苗、30棵乙种树苗共需1200元钱”列出方程组,求解即可;
(2)设出未知数,根据两种树苗共买400棵且总费用不超过10600元列出一元一次不等式,然后解不等式即可.
解:(1)设购买一棵甲种树苗需x元,购买一棵乙种树苗需y元,
由题意得:,
解得:,
答:购买一棵甲种树苗需30元,购买一棵乙种树苗需20元;
(2)设该社区购买a棵甲种树苗,则购买(400-a)棵乙种树苗,
由题意得:30a+20(400-a)≤10600,
解得:x≤260,
答:该社区最多可以购买260棵甲种树苗.
科目:初中数学 来源: 题型:
【题目】如图,直线分别与x轴、y轴交于两点,与直线交于点C(4,2).
(1)点A坐标为( , ),B为( , );
(2)在线段上有一点E,过点E作y轴的平行线交直线于点F,设点E的横坐标为m,当m为何值时,四边形是平行四边形;
(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0)、B(2,0)两点,交y轴于点C(0,﹣2),过点A、C画直线.
(1)求二次函数的解析式;
(2)若点P在x轴正半轴上,且PA=PC,求OP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点E在BC上,CD⊥AB,EF⊥AB,垂足分别为D、F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选出2名同学举行首场比赛.求下列事件的概率:
(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学.
(2)随机选取2名同学,其中有乙同学.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】分别是三角形的边的中点,是所在平面上的动点,连接,点分别是的中点,顺次连接点
(1)如图,当点在的内部时,求证:四边形是平行四边形;
(2)若四边形是菱形,则与应满足怎样的关系?若四边形是矩形,则与应满足怎样的关系?(直接写出答案,不需要说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2-(2k+3)x+k2=0有两个不相等的实数根x1,x2.
(1)求k的取值范围;
(2)若两不相等的实数根满足--=-9,求实数k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB=AC,∠A=36°,AB的垂直平分线MN交AB于点M,交AC于点D,下列结论:①△BCD是等腰三角形;②BD是∠ABC的平分线;③DC+BC=AB;④△AMD≌△BCD,正确的是 ( )
A.①②B.②③C.①②③D.①②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com