精英家教网 > 初中数学 > 题目详情

【题目】如图,的直径,上的点,为圆外一点,均与圆相切,设,则满足的关系式为(

A.B.C.D.以上都不对

【答案】B

【解析】

连结OCOD,则∠PCO=90°,∠PDO=90°,可得∠CPD+COD=180°,根据OB=OCOD=OA,可得∠BOC=180°-2B,∠AOD=180°-2A,则可得出αβ的关系式.

连结OCOD

PCPD均与圆相切,

∴∠PCO=90°,∠PDO=90°

∵∠PCO+COD+ODP+CPD=360°

∴∠CPD+COD=180°

OB=OCOD=OA

∴∠BOC=180°-2B,∠AOD=180°-2A

∴∠COD+BOC+AOD=180°

180°-CPD+180°-2B+180°-2A=180°

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,ADC=60°,AB=BC=1,则下列结论:

①∠CAD=30°BD=S平行四边形ABCD=ABACOE=ADSAPO=,正确的个数是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,

沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是【 】

A.一直增大 B.一直减小 C.先减小后增大 D.先增大后减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船(如图所示).小船从P处出发,沿北偏东60°方向划行200米到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米(精确到1米)?

(参考数据:sin37°≈0.60cos37°≈0.80tan37°≈0.75≈1.41≈1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校园安全受到全社会的广泛关注,东营市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:

1接受问卷调查的学生共有_______人,扇形统计图中基本了解部分所对应扇形的圆心角为_______°

2请补全条形统计图;

3若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到了解基本了解程度的总人数;

4若从对校园安全知识达到了解程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,⊙A的半径为1,圆心A点的坐标为(21).直线OM是一次函数y=x的图象.将直线OM沿x轴正方向平行移动.

1)填空:直线OMx轴所夹的锐角度数为 °

2)求出运动过程中⊙A与直线OM相切时的直线OM的函数关系式;(可直接用(1)中的结论)

3)运动过程中,当⊙A与直线OM相交所得的弦对的圆心角为90°时,直线OM的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,等边ABC的边长为3,分别以顶点BAC为圆心,BA长为半径作,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l为对称轴的交点.

(1)如图2,将这个图形的顶点A与线段MN作无滑动的滚动,当它滚动一周后点A与端点N重合,则线段MN的长为

(2)如图3,将这个图形的顶点A与等边DEF的顶点D重合,且ABDEDE=2π,将它沿等边DEF的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;

(3)如图4,将这个图形的顶点BO的圆心O重合,O的半径为3,将它沿O的圆周作无滑动的滚动,当它第n次回到起始位置时,点I所经过的路径长为 (请用含n的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某排球队6名场上队员的身高(单位:cm)是:180182184186190194.现用一名身高为188cm的队员换下场上身高为182cm的队员,与换人前相比,场上队员的身高

A.平均数变小,方差变小B.平均数变小,方差变大

C.平均数变大,方差变小D.平均数变大,方差变大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BDACDCEABE

1)求证:△ABD∽△ACE

2)连接DE,求证:∠ADE=∠ABC

查看答案和解析>>

同步练习册答案