【题目】设抛物线的解析式为y=ax2 , 过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2( ,0)作x轴的垂线,交抛物线于点A2;…;过点Bn(( )n﹣1 , 0)(n为正整数)作x轴的垂线,交抛物线于点An , 连接AnBn+1 , 得Rt△AnBnBn+1 .
(1)求a的值;
(2)直接写出线段AnBn , BnBn+1的长(用含n的式子表示);
(3)在系列Rt△AnBnBn+1中,探究下列问题:
①当n为何值时,Rt△AnBnBn+1是等腰直角三角形?
②设1≤k<m≤n(k,m均为正整数),问:是否存在Rt△AkBkBk+1与Rt△AmBmBm+1相似?若存在,求出其相似比;若不存在,说明理由.
【答案】
(1)
解:∵点A1(1,2)在抛物线的解析式为y=ax2上,
∴a=2;
(2)
解:AnBn=2x2=2×[( )n﹣1]2=( )2n-3,
BnBn+1=( )n;
(3)
解:由Rt△AnBnBn+1是等腰直角三角形得AnBn=BnBn+1,则:( )2n-3=( )n,
2n﹣3=n,n=3,
∴当n=3时,Rt△AnBnBn+1是等腰直角三角形,
②依题意得,∠AkBkBk+1=∠AmBmBm+1=90°,
有两种情况:i)当Rt△AkBkBk+1∽Rt△AmBmBm+1时,
= , = , = ,
所以,k=m(舍去),
ii)当Rt△AkBkBk+1∽Rt△Bm+1BmAm时,
= , = , = ,
∴k+m=6,
∵1≤k<m≤n(k,m均为正整数),
∴取 或 ;
当 时,Rt△A1B1B2∽Rt△B6B5A5,
相似比为: = =64,
当 时,Rt△A2B2B3∽Rt△B5B4A4,
相似比为: = =8,
所以:存在Rt△AkBkBk+1与Rt△AmBmBm+1相似,其相似比为64:1或8:1.
【解析】本题考查了二次函数的综合问题,这是一个函数类的规律题,把坐标、二次函数和线段有机地结合在一起,以求线段的长为突破口,以相似三角形的对应边的比为等量关系,代入计算解决问题,综合性较强,因为本题小字标较多,容易出错.(1)直接把点A1的坐标代入y=ax2求出a的值;(2)由题意可知:A1B1是点A1的纵坐标:则A1B1=2×12=2;A2B2是点A2的纵坐标:则A2B2=2×( )2= ;…则AnBn=2x2=2×[( )n﹣1]2=( )2n-3;
B1B2=1﹣ = ,B2B3= ﹣( )2 = =( )2 , …,BnBn+1=( )n;(3)因为Rt△AkBkBk+1与Rt△AmBmBm+1是直角三角形,所以分两种情况讨论:根据(2)的结论代入所得的对应边的比列式,计算求出k与m的关系,并与1≤k<m≤n(k,m均为正整数)相结合,得出两种符合条件的值,分别代入两相似直角三角形计算相似比.
【考点精析】本题主要考查了二次函数的性质和相似三角形的判定的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.
(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;
(2)求出两个数字之和能被3整除的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.
(注意:本题中的计算过程和结果均保留根号)
(1)若∠A=60°,求BC的长;
(2)若sinA= ,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.
(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;
(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;
(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.
(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;
(2)在图2中画出线段AB的垂直平分线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
(1)m=%,n=%,这次共抽查了名学生进行调查统计;
(2)请补全上面的条形图;
(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:
①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c(a≠0)有一个根为﹣
其中正确的结论个数有( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y甲(万元)与进货量x(吨)近似满足函数关系y甲=0.3x;乙种水果的销售利润y乙(万元)与进货量x(吨)近似满足函数关系y乙=ax2+bx(其中a≠0,a,b为常数),且进货量x为1吨时,销售利润y乙为1.4万元;进货量x为2吨时,销售利润y乙为2.6万元.
(1)求y乙(万元)与x(吨)之间的函数关系式.
(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t吨,请你写出这两种水果所获得的销售利润之和W(万元)与t(吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com