精英家教网 > 初中数学 > 题目详情

【题目】如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.

(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;
(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;
(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.

【答案】
(1)

解:PM=PN,PM⊥PN,理由如下:

∵△ACB和△ECD是等腰直角三角形,

∴AC=BC,EC=CD,∠ACB=∠ECD=90°.

在△ACE和△BCD中

∴△ACE≌△BCD(SAS),

∴AE=BD,∠EAC=∠CBD,

∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,

∴PM= BD,PN= AE,

∴PM=PM,

∵∠NPD=∠EAC,∠MPN=∠BDC,∠EAC+∠BDC=90°,

∴∠MPA+∠NPC=90°,

∴∠MPN=90°,

即PM⊥PN;


(2)

解:∵△ACB和△ECD是等腰直角三角形,

∴AC=BC,EC=CD,

∠ACB=∠ECD=90°.

∴∠ACB+∠BCE=∠ECD+∠BCE.

∴∠ACE=∠BCD.

∴△ACE≌△BCD.

∴AE=BD,∠CAE=∠CBD.

又∵∠AOC=∠BOE,

∠CAE=∠CBD,

∴∠BHO=∠ACO=90°.

∵点P、M、N分别为AD、AB、DE的中点,

∴PM= BD,PM∥BD;

PN= AE,PN∥AE.

∴PM=PN.

∴∠MGE+∠BHA=180°.

∴∠MGE=90°.

∴∠MPN=90°.

∴PM⊥PN.


(3)

解:PM=kPN

∵△ACB和△ECD是直角三角形,

∴∠ACB=∠ECD=90°.

∴∠ACB+∠BCE=∠ECD+∠BCE.

∴∠ACE=∠BCD.

∵BC=kAC,CD=kCE,

=k.

∴△BCD∽△ACE.

∴BD=kAE.

∵点P、M、N分别为AD、AB、DE的中点,

∴PM= BD,PN= AE.

∴PM=kPN.


【解析】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质以及相似三角形的判定和性质和三角形中位线定理的运用,熟记和三角形有关的各种性质定理是解答此题的关键.(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)PM=kPN,由已知条件可证明△BCD∽△ACE,所以可得BD=kAE,因为点P、M、N分别为AD、AB、DE的中点,所以PM= BD,PN= AE,进而可证明PM=kPN.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.

(1)求证:CD是⊙O的切线;
(2)过点B作⊙O的切线交CD的延长线于点E,BC=6, .求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为( )

A.8
B.10
C.12
D.14

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.
(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;
(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过点A(2,0)的两条直线l1 , l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=

(1)求点B的坐标;
(2)若△ABC的面积为4,求直线l2的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设抛物线的解析式为y=ax2 , 过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2 ,0)作x轴的垂线,交抛物线于点A2;…;过点Bn(( n1 , 0)(n为正整数)作x轴的垂线,交抛物线于点An , 连接AnBn+1 , 得Rt△AnBnBn+1
(1)求a的值;
(2)直接写出线段AnBn , BnBn+1的长(用含n的式子表示);
(3)在系列Rt△AnBnBn+1中,探究下列问题:
①当n为何值时,Rt△AnBnBn+1是等腰直角三角形?
②设1≤k<m≤n(k,m均为正整数),问:是否存在Rt△AkBkBk+1与Rt△AmBmBm+1相似?若存在,求出其相似比;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:| - |+( -1)0+2sin45°﹣2cos30°+( 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是(  )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案