精英家教网 > 初中数学 > 题目详情
19.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为$\sqrt{3}$.

分析 根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.

解答 解:∵DE是BC的垂直平分线,
∴DB=DC=2,
∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,
∴DE=AD=1,
∴BE=$\sqrt{B{D}^{2}-D{E}^{2}}$=$\sqrt{3}$,
故答案为:$\sqrt{3}$.

点评 本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.如图,双曲线y=$\frac{k}{x}$(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(3,4),则△OAB的面积为18.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,AE∥FD,AE=FD,要使△EAC≌△FDB,则应补充条件∠E=∠F(填写一个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.在平面直角坐标系中,点P(5,-2)关于原点(0,0)的对称点的坐标是(-5,2).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,直线y=-x+c与直线y=ax+b的交点坐标为(3,-1),关于x的不等式-x+c≥ax+b的解集为(  )
A.x≥-1B.x≤-1C.x≥3D.x≤3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.小红驾车从甲地到乙地,她出发第xh时距离乙地ykm,已知小红驾车中途休息了1小时,图中的折线表示她在整个驾车过程中y与x之间的函数关系.
(1)B点的坐标为(3,120);
(2)求线段AB所表示的y与x之间的函数表达式;
(3)小红休息结束后,以60km/h的速度行驶,则点D表示的实际意义是小红到达乙地.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知xm=6,xn=4,则xm+n的值为24.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知二次函数y=x2+(2m+2)x+m2+m-1(m是常数).
(1)用含m的代数式表示该二次函数图象的顶点坐标;
(2)当二次函数图象顶点在x轴上时,求出m的值及此时顶点的坐标;
(3)小明研究发现:m取不同的值时,表示不同的二次函数,求出这些二次函数图象的顶点坐标,并将它们在同一直角坐标系中画出,可知这些顶点都在同一条直线上.请写出这条直线的函数表达式,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,己知∠AOB=90°,过点O作直线CD,作OE⊥CD于点O.
(l)图中除了直角相等外,再找出一对相等的角,并证明它们相等;
(2)若∠AOD=70°,求∠BOC的度数;
(3)将直线CD绕点O旋转,若在旋转过程中,OB所在的直线平分∠DOE,求此时∠AOD的度数.

查看答案和解析>>

同步练习册答案