【题目】在正方形和等腰直角中,,是的中点,连接、.
(1)如图1,当点在边上时,延长交于点.求证:;
(2)如图2,当点在的延长线上时,(1)中的结论是否成立?请证明你的结论;
(3)如图3,若四边形为菱形,且,为等边三角形,点在的延长线上时,线段、又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.
【答案】(1)证明见解析;(2)成立,证明见解析;(3),图详见解析.
【解析】
(1)利用已知条件易证,则有,,从而有,再利用直角三角形的斜边中线的性质即可得出结论;
(2)由已知条件易证,由全等三角形的性质证明,最后利用直角三角形的斜边中线的性质即可得出结论;
(3)由已知条件易证,由全等三角形的性质证明,最后利用等腰三角形的性质和特殊角的三角函数值即可求出答案.
(1)证明:,
又,
(ASA)
,
又,,
在中,
(2)成立,证明如下:
延长到,使,连接、、.
,,
、、
,,
,
在中,
(3)
论证过程中需要的辅助线如图所示
证明:延长GP到点E,使,连接DE,CE,CG,
∵
∴
∴
∵为等边三角形
∴
∴
∵
∴
∴
∵
∴
∵
∴
又∵
∴
∴
又∵
∴
∵
∴
∴
∴
科目:初中数学 来源: 题型:
【题目】现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.
(1)求y与x之间的函数关系式;
(2)设种植的总成本为w元,
①求w与x之间的函数关系式;
②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O为∠ABC的边上的一点,过点O作OM⊥AB于点,到点的距离等于线段OM的长的所有点组成图形.图形W与射线交于E,F两点(点在点F的左侧).
(1)过点作于点,如果BE=2,,求MH的长;
(2)将射线BC绕点B顺时针旋转得到射线BD,使得∠,判断射线BD与图形公共点的个数,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=120°,M为BC边上一动点(M不与B、C重合)
(1)如图1,若∠MAC=45°,求;
(2)如图2,将CM绕点C顺时针旋转60°至CN,连接BN,T为BN的中点,连接AT.
①求证:AM=2AT;
②当AB=AC=2时,直接写出CM+4AT的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.
(1)求证:DE是⊙O的切线;
(2)当⊙O半径为3,CE=2时,求BD长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接与⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF。
(1)若∠CAD=α,求∠BAC(用含α的代数式表示);
(2)求证:CF是⊙O的切线。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C=90°,以AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.
(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;
(2)如图②,若点F为弧AD的中点,⊙O的半径为2,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:若关于x的一元二次方程ax2+bx+c=0的两个非零实数根分别为x1,x2,则x1+x2=﹣,x1x2=.
解决下列问题:已知关于x的一元二次方程(x+n)2=6x有两个非零不等实数根x1,x2,设m=,
(Ⅰ)当n=1时,求m的值;
(Ⅱ)是否存在这样的n值,使m的值等于?若存在,求出所有满足条件的n的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com