【题目】已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=3︰4.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是∠ABC的平分线,此时线段CD的长是________.
【答案】6
【解析】分析:设CD=3x,则CE=4x,BE=12﹣4x,依据∠EBF=∠EFB,可得EF=BE=12﹣4x,由旋转可得DF=CD=3x,再根据Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(4x)2=(3x+12﹣4x)2,进而得出CD=6.
详解:如图所示,设CD=3x,则CE=4x,BE=12﹣4x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣4x,由旋转可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(4x)2=(3x+12﹣4x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=6.故答案为:6.
科目:初中数学 来源: 题型:
【题目】(1)已知:点A和点B(如图1),根据条件画图(用三角板和量角器):
①画射线BA;
②画∠ABC=90°,使得点C在线段AB上方且AB=BC;
③连接AC,画出∠ABC的角平分线BD,交AC于D.通过观察、度量、猜想获得线段BD、AC的关系.
(2)已知:如图2,∠AOB=150,OC平分∠AOB,AO⊥DO,求∠COD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.
(1)求证:BE=CD;
(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知平面直角坐标系(如图),直线的经过点和点.
(1)求、的值;
(2)如果抛物线经过点、,该抛物线的顶点为点,求的值;
(3)设点在直线上,且在第一象限内,直线与轴的交点为点,如果,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】植树节期间,市团委组织部分中学的团员去东岸湿地公园植树.三亚市第二中学七(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有_____棵.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1:y=﹣x+3与x轴相交于点A,直线l2:y=kx+b经过点(3,﹣1),与x轴交于点B(6,0),与y轴交于点C,与直线l1相交于点D.
(1)求直线l2的函数关系式;
(2)点P是l2上的一点,若△ABP的面积等于△ABD的面积的2倍,求点P的坐标;
(3)设点Q的坐标为(m,3),是否存在m的值使得QA+QB最小?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=+1与x轴、y轴分别交于点A、B,以线AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90o、点P(x、y)为线段BC上一个动点(点P不与B、C重合),设△OPA的面积为S。
(1)求点C的坐标;
(2)求S关于x的函数解析式,并写出x的的取值范围;
(3)△OPA的面积能于吗,如果能,求出此时点P坐标,如果不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点A在y轴的正半轴上,点C在x轴的正半轴上,线段OA,OC的长分别是m,n且满足(m-6)2+=0,点D是线段OC上一点,将△AOD沿直线AD翻折,点O落在矩形对角线AC上的点E处
(1)求线段OD的长
(2)求点E的坐标
(3)DE所在直线与AB相交于点M,点N在x轴的正半轴上,以M、A、N、C为顶点的四边形是平行四边形时,求N点坐
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A,
(1)求点C的坐标及直线l2的解析式;
(2)求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com