【题目】(1)如图1,AB∥CD,求∠A+∠AEC+∠C的度数.
解:过点E作EF∥AB.
∵EF∥AB(已作)
∴∠A+∠AEF=180°(______)
又∵AB∥CD(已知)
∴EF∥CD(______)
∴∠CEF+∠______=180°(两直线平行,同旁内角互补)
∴∠A+∠AEF+∠CEF+∠C=360°(等式性质)
即∠A+∠AEC+∠C=______.
(2)根据上述解题及作辅助线的方法,在图2中,AB∥EF,则∠B+∠C+∠D+∠E=______.
(3)根据(1)和(2)的规律,图3中AB∥GF,猜想:∠B+∠C+∠D+∠E+∠F=______.
(4)如图4,AB∥CD,在B,D两点的同一侧有M1,M2,M3,…Mn共n个折点,则∠B+∠M1+∠M2+…+∠Mn+∠D的度数为______(用含n的代数式表示)
【答案】(1)两直线平行,同旁内角互补;平行关系的传递性;C;360°;
(2) 540°; (3) 720; (4) (n+1)×180°
【解析】
(1)如图1,过点E作EF∥AB,则EF∥CD,根据平行线的性质得到∠A+∠AEF=180°,∠CEF+∠C=180°,即可得到结论;
(2)分别过C,D作CE∥AB,DF∥AB,则CE∥DF∥CD,根据平行线的性质即可得到结论;
(2)分别过C,D,E作CG∥DH∥EI∥AB,则CG∥DH∥EI∥CD,根据平行线的性质即可得到结论;
(4)由(1)(2)(3)知,拐点的个数n与角的和之间的关系是(n+1)180°,于是得到∠B+∠M1+∠M2+…+∠Mn+∠D=(n+1)180°.
解:(1)过点E作EF∥AB.
∵EF∥AB(已作)
∴∠A+∠AEF=180°(两直线平行,同旁内角互补)
又∵AB∥CD(已知)
∴EF∥CD(平行关系的传递性)
∴∠CEF+∠C=180°(两直线平行,同旁内角互补)
∴∠A+∠AEF+∠CEF+∠C=360°(等式性质)
即∠A+∠AEC+∠C=360°.
(2)如图2,分别过C,D作CE∥AB,DF∥AB,则CE∥DF∥CD,
∴∠1+∠B=∠2+∠3=∠4+∠E=180°,
∴∠B+∠C+∠D+∠E=∠1+∠B+∠2+∠3+∠4+∠E=540°=3×180°;
(3)如图3,分别过C,D,E作CG∥DH∥EI∥AB,则CG∥DH∥EI∥CD,
∴∠B+∠BCG=180°,∠GCD+∠CDH=180°,∠HDE+∠IED=180°,∠IEF+∠JFE=180°,
∴∠B+∠C+∠D+∠E+∠F=720°;
(4)由(1)(2)(3)知,拐点的个数n与角的和之间的关系是(n+1)180°,
∴∠B+∠M1+∠M2+…+∠Mn+∠D=(n+1)180°.
故答案为:(1)两直线平行,同旁内角互补;平行关系的传递性;C;360°;(2)540°;(3)720°;(4)(n+1)×180°.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,已知AB=8,BC=6,矩形在直线上绕其右下角的顶点B向右旋转90°
至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置……以此类推,这样连续旋转2018
次后,顶点A在整个旋转过程中所经过的路线之和是_________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为正方形ABCD对角线上一点,以点O为圆心,OA长为半径的
⊙ O与BC相切于点E.
(1)求证:CD是⊙ O的切线;
(2)若正方形ABCD的边长为10,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是中国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中最重要的一种.书中有下列问題:“今有邑方不知大小,各中开门,出北门八十步有木,出西门二百四十五步见木,问邑方有几何?”意思是:如图,点、点分别是正方形的边、的中点,,,过点,步,步,则正方形的边长为( )
A.步B.步C.步D.步
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车制造厂开发一款新式电动汽车,计划一年生产安装辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:名熟练工和名新工人每月可安装辆电动汽车;名熟练工和名新工人每月可安装辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,弦CD⊥AB于E,∠CDB=15°,OE=2.
(1)求⊙O的半径;
(2)将△OBD绕O点旋转,使弦BD的一个端点与弦AC的一个端点重合,则弦BD与弦AC的夹角为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.
(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.
(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有__次.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com