【题目】某市举行知识大赛,校、校各派出名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.
(1)根据图示填写下表:
平均数 | 中位数 | 众数 | |
校选手成绩 | |||
校选手成绩 | 80 |
(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;
(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.
【答案】(1)85,85,100;表格见解析;(2)A校成绩好些,理由见详解;(3)A校的方差为:70,B校的方差为:160,A校代表队选手成绩较为稳定.
【解析】
(1)根据平均数、众数、中位数的意义,结合成绩统计图加以计算,即可补全统计表.;
(2)根据平均数和中位数的统计意义分析,即可得到结论;
(3)分别求出A校、B校的方差即可.
(1)A校平均数为:×(75+80+85+85+100)=85(分),众数85(分),
B校的众数为:100(分),
填表如下:
平均数/分 | 中位数/分 | 众数/分 | |
校选手成绩 | 85 | 85 | |
校选手成绩 | 80 | 100 |
故答案为:85,85,100;
(2)A校成绩好些,理由如下:
∵两个队的平均数都相同,A校的中位数高,
∴在平均数相同的情况下中位数高的A校成绩好些;
(3)∵A校的方差:S12=×[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,
B校的方差:S22=×[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160,
∴S12< S22,
∴A校代表队选手成绩较为稳定.
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC中,AC=BC,点D是线段AB上一动点,∠EDF绕点D旋转,在旋转过程中始终保持∠A=∠EDF,射线DE与边AC交于点M,射线DE与边BC交于点N,连接MN.
(1)找出图中的一对相似三角形,并证明你的结论;
(2)如图②,在上述条件下,当点D运动到AB的中点时,求证:在∠EDF绕点D旋转过程中,点D到线段MN的距离为定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AC=BD,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.
(1)证明:△ABD≌△BAC.
(2)四边形AHBG是什么样的四边形,请猜想并证明.
(3)若使四边形AHBG是正方形,还需在Rt△ABC添加一个什么条件?请添加条件并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,四边形是正方形, 是延长线上一点.直角三角尺的一条直角边经过点,且直角顶点在边上滑动(点不与点重合),另一直角边与的平分线相交于点.
(1)求证: ;
(2)如图(1),当点在边的中点位置时,猜想与的数量关系,并证明你的猜想;
(3)如图(2),当点在边(除两端点)上的任意位置时,猜想此时与有怎样的数量关系,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=ax+b与反比例函数y2=交于A,B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为(-3,-2).
(1)求直线和反比例函数的解析式;
(2)求点C的坐标,并结合图象直接写出y1<0时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年5月31日是世界卫生组织发起的第31个“世界无烟日”.重庆育才中学学生处鼓励学生积极宣传,并设计调查问卷,以更好地宣传吸烟的危害,七年级58班数学兴趣小组第一组的5名同学设计了如下调查问卷,随机调查了部分吸烟人,并将调查结果绘制成统计图.
根据以上信息,解答下列问题:
(1)E选项所在扇形的圆心角的度数是 ,并把条形统计图补充完整.
(2)重庆育才中学七年级58班数学兴趣小组第一组的5名同学中有两名男同学们,学校学生处准备从七年级58班数学兴趣小组第一组的5名同学中选取两名同学参加“世界无烟日”活动的总结会,请你用列表法或画树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为( )
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com