精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=x2﹣2hx+h,当自变量x的取值在﹣1≤x≤1的范围中时,函数有最小值n,则n的最大值是_____

【答案】

【解析】

根据二次函数的性质可找出二次函数图象的对称轴,分h≤-1、-1<h<1h≥1三种情况考虑,利用二次函数的性质结合h的取值范围即可找出n的取值范围,取其最大值即可得出结论.

二次函数y=x2-2hx+h图象的对称轴为直线x=h.
h≤-1时,x=-1y取最小值,此时n=1+2h+h=1+3h≤-2;
-1<h<1时,x=hy取最小值,此时n=h2-2h2+h=-h2+h=-(h-2+
h≥1时,x=1y取最小值,此时n=1-2h+h=1-h≤0.
综上所述:n的最大值为
故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣4,a),B(﹣1,2)是一次函数y1=kx+b与反比例函数y2=(m<0)图象的两个交点,AC⊥x轴于C.

(1)求出k,bm的值.

(2)根据图象直接回答:在第二象限内,当y1>y2时,x的取值范围是 ________.

(3)P是线段AB上的一点,连接PC,若△PCA的面积等于,求点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m.

(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;

(2)若菜园面积为384 m2,求x的值;

(3)求菜园的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知直线AByx4x轴于点A,交y轴于点B.直线CDy=-x1与直线AB相交于点M,交x轴于点C,交y轴于点D

(1)直接写出点B和点D的坐标.

(2)若点P是射线MD的一个动点,设点P的横坐标是x,△PBM的面积是S,求Sx之间的函数关系,并指出x的取值范围.

(3)S10时,平面直角坐标系内是否存在点E,使以点BEPM为顶点的四边形是平行四边形?若存在,共有几个这样的点?请求出其中一个点的坐标(写出求解过程);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是(  )

A. ac<0 B. ab>0 C. 4a+b=0 D. a﹣b+c>0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点Cx轴下方,且使OCA∽△OBC.

(1)求线段OC的长度;

(2)设直线BCy轴交于点M,点CBM的中点时,求直线BM和抛物线的解析式;

(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1y2x1与直线l2ymx4相交于点P(1b)

1)求bm的值;

2)垂直于x轴的直线与直线l1l2,分别交于点CD,垂足为点E,设点E的坐标为(a0)若线段CD长为2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.

(1)求证:AB=AF;

(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市举行知识大赛,校、校各派出名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.

1)根据图示填写下表:

平均数

中位数

众数

校选手成绩

校选手成绩

80

2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;

3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.

查看答案和解析>>

同步练习册答案