【题目】如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.
(1)求线段OC的长度;
(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;
(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】(1)OC=;(2)y=x﹣,抛物线解析式为y=x2﹣x+2;(3)点P存在,坐标为(,﹣).
【解析】
(1)令y=0,求出x的值,确定出A与B坐标,根据已知相似三角形得比例,求出OC的长即可;
(2)根据C为BM的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC,确定出C的坐标,利用待定系数法确定出直线BC解析式,把C坐标代入抛物线求出a的值,确定出二次函数解析式即可;
(3)过P作x轴的垂线,交BM于点Q,设出P与Q的横坐标为x,分别代入抛物线与直线解析式,表示出坐标轴,相减表示出PQ,四边形ACPB面积最大即为三角形BCP面积最大,三角形BCP面积等于PQ与B和C横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P的坐标即可.
(1)由题可知当y=0时,a(x﹣1)(x﹣3)=0,
解得:x1=1,x2=3,即A(1,0),B(3,0),
∴OA=1,OB=3
∵△OCA∽△OBC,
∴OC:OB=OA:OC,
∴OC2=OAOB=3,
则OC=;
(2)∵C是BM的中点,即OC为斜边BM的中线,
∴OC=BC,
∴点C的横坐标为,
又OC=,点C在x轴下方,
∴C(,﹣),
设直线BM的解析式为y=kx+b,
把点B(3,0),C(,﹣)代入得:,
解得:b=﹣,k=,
∴y=x﹣,
又∵点C(,﹣)在抛物线上,代入抛物线解析式,
解得:a=,
∴抛物线解析式为y=x2﹣x+2;
(3)点P存在,
设点P坐标为(x,x2﹣x+2),过点P作PQ⊥x轴交直线BM于点Q,
则Q(x,x﹣),
∴PQ=x﹣﹣(x2﹣x+2)=﹣x2+3x﹣3,
当△BCP面积最大时,四边形ABPC的面积最大,
S△BCP=PQ(3﹣x)+PQ(x﹣)=PQ=﹣x2+x﹣,
当x=﹣时,S△BCP有最大值,四边形ABPC的面积最大,此时点P的坐标为(,﹣).
科目:初中数学 来源: 题型:
【题目】如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,则P′A∶PB=( )
A. 1∶ B. 1∶2 C. ∶2 D. 1∶
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,用尺规作图的方法作出的角平分线. (保留作图痕迹,不要求写出作法)
(2)在(1)的基础上证明命题“全等三角形的对应角角平分线相等”是真命题.请填空并证明.
已知:如图,__________________,和分别是和的平分线.
求证:______________________________.
证明:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E、F分别为△ABC的边BC、CA的中点,延长EF到D,使得DF=EF,连接DA、DB、AE.
(1)求证:四边形ACED是平行四边形;
(2)若AB=AC,试说明四边形AEBD是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度(单位:)与足球被踢出后经过的时间(单位:)之间的关系如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | |
0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列结论:①足球距离地面的最大高度为;②足球飞行路线的对称轴是直线;③足球被踢出时落地;④足球被踢出时,距离地面的高度是.
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长度为_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,四边形是正方形, 是延长线上一点.直角三角尺的一条直角边经过点,且直角顶点在边上滑动(点不与点重合),另一直角边与的平分线相交于点.
(1)求证: ;
(2)如图(1),当点在边的中点位置时,猜想与的数量关系,并证明你的猜想;
(3)如图(2),当点在边(除两端点)上的任意位置时,猜想此时与有怎样的数量关系,并证明你的猜想.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com