精英家教网 > 初中数学 > 题目详情

【题目】已知:点M、P、N、Q依次是正方形ABCD的边AB、BC、CD、DA上一点(不与正方形的顶点重合),给出如下结论:
①MN⊥PQ,则MN=PQ;
②MN=PQ,则MN⊥PQ;
③△AMQ≌△CNP,则△BMP≌△DNQ;
④△AMQ∽△CNP,则△BMP∽△DNQ
其中所有正确的结论的序号是

【答案】①②③
【解析】解:连接QM,MP,PN,PQ,过N作NE⊥AB于E,过Q作QF⊥BC于F,
则四边形BCNE,四边形CDQF是矩形,
∴EN=BC,QF=CD,
∵四边形ABCD是正方形,
∴AB=BC=CD=AD,
∴NE=QF,
①∵MN⊥PQ,
∴∠PQF=∠MNE,
在△PQF与△MNE中,
∴△PQF≌△MNE,
∴MN=PQ;
②在Rt△PQF与Rt△MNE中,
∴Rt△PQF≌Rt△MNE,
∴∠PQF=∠MNE,
∵∠PQF+∠1=90°,
∴∠MNE+∠1=90°,
∴MN⊥PQ;
③∵△AMQ≌△CNP,
∴AM=CN,PC=AQ,
∴PB=QD,BM=DN,
在△BMP与△DNQ中,
∴△BMP≌△DNQ,
④由△AMQ∽△CNP和已知条件推不出△BMP∽△DNQ的条件.
所以答案是:①②③.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知AM∥BN,∠A=52°,点P是射线AM上的动点(与点A不重合),BC、BD分别平分∠ABP∠PBN,分别交射线AM于点C,D.

(1)求∠CBD的度数;

(2)当点P运动时,∠APB∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由,若变化,请写出变化规律;

(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校假期由校长带领该校三好学生去旅游甲旅行社说若校长买全票一张则学生半价.乙旅行社说全部人六折优惠若全票价是1200

(1)若学生人数是20甲、乙旅行社收费分别是多少?

(2)当学生人数的多少时两家旅行社的收费一样?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,AB=3BC=5B=60°GCD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F.

1)求证:四边形CEDF是平行四边形;

2 AE= 时,四边形CEDF是矩形;

AE= 时,四边形CEDF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在OAB中,O为坐标原点,横、纵轴的单位长度相同,AB的坐标分别为(86)(160),点P沿OA边从点O开始向终点A运动,速度每秒1个单位,点Q沿BO边从B点开始向终点O运动,速度每秒2个单位,如果PQ同时出发,用t()表示移动时间,当这两点中有一点到达自己的终点时,另一点也停止运动。求:

1)几秒时PQAB.

2)设OPQ的面积为y,求yt的函数关系式.

3OPQOAB能否相似?若能,求出点P的坐标,若不能,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,所示的正方形网格中,△ABC的顶点均在格点上,在所给平面直角坐标系中解答下列问题:
(1)画出△ABC关于x轴对称的△A1B1C1
(2)作出将△ABC绕原点O按逆时针方向旋转90°后所得的△A2B2C2
(3)写出点A1、A2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x-1,令y=0可得x=1,我们就说1是函数y=x-1的零点.

已知y=x2-2mx-2(m+3)(m为常数).

(1)m=0时,求该函数的零点;

(2)证明:无论m取何值,该函数总有两个零点;

(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A,B(点A在点B左侧),点M在直线y=x-10上,当MA+MB最小时,求直线AM的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】筐葡萄,以每筐千克为标准,超过或不足的千克数分别用正、负数来表示,与标准质量的差值记录如下:

单位(千克)

筐数

(1)筐葡萄中,最重的一筐比最轻的一筐重________千克.

(2)与标准重量比较,筐葡萄总计超过或不足多少千克?

(3)若葡萄每千克售价元,则出售这筐葡萄可卖多少元?

查看答案和解析>>

同步练习册答案