精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AM∥BN,∠A=52°,点P是射线AM上的动点(与点A不重合),BC、BD分别平分∠ABP∠PBN,分别交射线AM于点C,D.

(1)求∠CBD的度数;

(2)当点P运动时,∠APB∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由,若变化,请写出变化规律;

(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.

【答案】(1)∠CBD=64°;(2)不变化,∠APB=2∠ADB,证明详见解析;(3)∠ABC=32°.

【解析】

(1)根据AMBN,得知∠A=52°,再根据角平分线的定义知∠ABP=∠CBP、∠PBN=∠DBP,可得∠CBD=∠ABN=64°;
(2)由AM∥BN∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN∠PBN=2∠DBN,从而可得∠APB=2∠ADB;
(3)由AM∥BN∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,即∠ABC=∠DBN,再根据(1)可得∠CBD=64°,∠ABN=128°,即可得答案.

(1)∵AM∥BN,

∴∠A+∠ABN=180°,

∵∠A=52°,

∴∠ABN=128°,

∵BC、BD分别平分∠ABP∠PBN,

∴∠CBP=∠ABP,∠DBP=∠NBP,

∴∠CBD=∠ABN=64°;

(2)不变化,∠APB=2∠ADB,

证明:∵AM∥BN,

∴∠APB=∠PBN,

∠ADB=∠DBN,

∵BD平分∠PBN,

∴∠PBN=2∠DBN,

∴∠APB=2∠ADB;

(3)∵AD∥BN,

∴∠ACB=∠CBN,

∵∠ACB=∠ABD,

∴∠CBN=∠ABD,

∴∠ABC=∠DBN,

由(1)可得,∠CBD=64°,∠ABN=128°,

∴∠ABC=(128°﹣64°)=32°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,一个点从数轴上的原点开始,先向左移动7cm到达A点,再从A点向右移动12cm到达B点,把点A到点B的距离记为AB,点C是线段AB的中点.

(1)点C表示的数是_____

(2)若点A以每秒2cm的速度向左移动,同时C、B点分别以每秒1cm、4cm的速度向右移动,设移动时间为t秒,

①点C表示的数是_____(用含有t的代数式表示);

②当t=2秒时,求CB﹣AC的值;

③试探索:CB﹣AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.
(1)用适当的方法写出点A(x,y)的所有情况.
(2)求点A落在第三象限的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,两个含有30°角的完全相同的三角板ABCDEF沿直线l滑动,下列说法错误的是(  )

A. 四边形ACDF是平行四边形 B. 当点EBC中点时,四边形ACDF是矩形

C. 当点B与点E重合时,四边形ACDF是菱形 D. 四边形ACDF不可能是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥GD,∠1=∠2,∠BAC=65°.将求∠AGD的过程填写完整.

∵EF∥CD,

∴∠2=      ),

∵∠1=∠2,

∴∠1=∠3,

∴AB∥      ),

∴∠BAC+   =180°(   ),

∵∠BAC=65°,

∴∠AGD=   °.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC,

从以上5个条件中任选2个条件为一组,能判定四边形ABCD是平行四边形的有(   )组.

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOBOA=OB,点EOB上,且四边形AEBF是平行四边形.请你只用无刻度的直尺在图中画出∠AOB的平分线(保留画图痕迹,不写画法),并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,测量人员在山脚A处测得山顶B的仰角为45°,沿着仰角为30°的山坡前进1000米到达D处,在D处测得山顶B的仰角为60°,求山的高度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点M、P、N、Q依次是正方形ABCD的边AB、BC、CD、DA上一点(不与正方形的顶点重合),给出如下结论:
①MN⊥PQ,则MN=PQ;
②MN=PQ,则MN⊥PQ;
③△AMQ≌△CNP,则△BMP≌△DNQ;
④△AMQ∽△CNP,则△BMP∽△DNQ
其中所有正确的结论的序号是

查看答案和解析>>

同步练习册答案