| A. | tan∠ADB=$\sqrt{2}$-1 | B. | ∠DEF=67.5° | C. | ∠AGB=∠BEF | D. | cos∠AGB=$\frac{\sqrt{6}}{4}$ |
分析 连接CE,设EF与BD相交于点O,根据轴对称性可得AB=AE,并设为1,利用勾股定理列式求出BE,再根据翻折的性质可得DE=BF=BE,再求出BC=1,然后对各选项分析判断利用排除法求解.
解答 解:如图,连接CE,设EF与BD相交于点O,![]()
由轴对称性得,AB=AE,设为1,
则BE=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
∵点E与点F关于BD对称,
∴DE=BF=BE=$\sqrt{2}$,
∴AD=1+$\sqrt{2}$,
∵AD∥BC,AB⊥AD,AB=AE,
∴四边形ABCE是正方形,
∴BC=AB=1,
∴tan∠ADB=$\frac{AB}{AD}$=$\frac{1}{1+\sqrt{2}}$=$\sqrt{2}$-1,故A错误;
∠AEB+22°=45°+22°=67°,
∵BE=BF,∠EBF=∠AEB=45°,
∴∠BFE=$\frac{180°-45°}{2}$=67.5°,
∴∠DEF=∠BFE=67.5°,故B错误;
∵AB=AE=BC=1,AD∥BC,AB⊥AD,
∴四边形ABCE是正方形,
∴∠BAC=∠CBE=45°,
∵点E与点F关于BD对称,
∴EF⊥BD,
∵AB⊥AD,
∴∠EOD=∠BAD=90°,
∵∠ADB=∠ODE,
∴∠ABG=∠OED,
∵AD∥BC,
∴∠OED=∠BFE,
∴∠ABG=∠BFE,
∴∠AGB=∠BEF,故C错误;
由勾股定理得,OE2=BE2-BO2=($\sqrt{2}$)2-($\frac{\sqrt{4+2\sqrt{2}}}{2}$)2=$\frac{4-2\sqrt{2}}{4}$,
∴OE=$\frac{\sqrt{4-2\sqrt{2}}}{2}$,
∵∠EBG+∠AGB=90°,
∠EBG+∠BEF=90°,
∴∠AGB=∠BEF,
又∵∠BEF=∠DEF
∴cos∠AGB=$\frac{OE}{DE}$=$\frac{\frac{\sqrt{4-2\sqrt{2}}}{2}}{\sqrt{2}}$=$\frac{\sqrt{2-\sqrt{2}}}{2}$,故D正确.
故选:D.
点评 本题考查了轴对称的性质,解直角三角形,等腰直角三角形的判定与性质,正方形的判定与性质,熟记性质是解题的关键,设出边长为1可使求解过程更容易理解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3.8×104 | B. | 38×104 | C. | 3.8×105 | D. | 3.8×106 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com