精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,与y轴相交于点C,该抛物线的顶点为点D

(1)求该抛物线的解析式及点D的坐标。
(2)连接AC,CD,BD,BC,设△AOC,△BOC,△BCD的面积分别为S1 , S2和S3 , 用等式表示S1 , S2 , S3之间的数量关系,并说明理由
(3)假设存在,设点M的坐标为(m,0),表示出MA的长,根据MN∥BC,得到比例式求出AN,根据△AMN∽△ACM,得到比例式求出m,得到点M的坐标,求出BC的解析式,根据MN∥BC,设直线MN的解析式,求解即可

【答案】
(1)

解:∵抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,

解得

∴抛物线的解析式为:y=x2﹣2x﹣3,

y=x2﹣2x﹣3=(x﹣1)2﹣4,

∴点D的坐标为:(1,﹣4)


(2)

解:S1+S3=S2

过点D作DE⊥x轴于点E,DF⊥y轴于F,

由题意得,CD=,BD=,BC=

CD2+BC2=BD2

∴△BCD是直角三角形,

S1=×OA×OC=

S2=×OB×OC=

S3=×CD×BC=3,

∴S1+S3=S2


(3)

解:存在点M使∠AMN=∠ACM,

设点M的坐标为(m,0),

∵﹣1<m<3,

∴MA=m+1,AC=

∵MN∥BC,

=,即=

解得,AN=(m+1),

∵∠AMN=∠ACM,∠MAN=∠CAM,

∴△AMN∽△ACM,

=,即(m+1)2=(m+1),

解得,m1=,m2=﹣1(舍去),

∴点M的坐标为(,0),

设BC的解析式为y=kx+b,把B(3,0),C(0,﹣3)代入得,

,解得

则BC的解析式为y=x﹣3,又MN∥BC,

∴设直线MN的解析式为y=x+b,把点M的坐标为(,0)代入得,

b=﹣

∴直线MN的解析式为y=x﹣


【解析】(1)利用待定系数法求出抛物线的解析式,用配方法把一般式化为顶点式求出点D的坐标;
(2)根据点的坐标求出△AOC,△BOC的面积,利用勾股定理的逆定理判断△BCD为直角三角形,求出其面积,计算即可得到答案;
(3)假设存在,设点M的坐标为(m,0),表示出MA的长,根据MN∥BC,得到比例式求出AN,根据△AMN∽△ACM,得到比例式求出m,得到点M的坐标,求出BC的解析式,根据MN∥BC,设直线MN的解析式,求解即可.
【考点精析】解答此题的关键在于理解相似三角形的性质的相关知识,掌握对应角相等,对应边成比例的两个三角形叫做相似三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点E、F分别在边AD、BC上,且EF∥CD,G为边AD延长线上一点,连接BG,则图中与△ABG相似的三角形有( )个.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知函数的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P (a,0)(其中a>2),过点P作x轴的垂线,分别交函数和y=x的图象于点C,D.

(1)求点A的坐标;

(2)若OB=CD,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.

(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由
(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;
(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:

(1)本次接收随机抽样调查的男生人数为 人,扇形统计图中“良好”所对应的圆心角的度数为
(2)补全条形统计图中“优秀”的空缺部分。
(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C是的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.

(1)求证:AC=CD;
(2)若OC=,求BH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从﹣3,﹣1, ,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组 无解,且使关于x的分式方程 =﹣1有整数解,那么这5个数中所有满足条件的a的值之和是(  )
A.﹣3
B.﹣2
C.﹣
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于点O,OC=1,以点O为圆心OC为半径作半圆.

(1)求证:AB为⊙O的切线;
(2)如果tan∠CAO= ,求cosB的值.

查看答案和解析>>

同步练习册答案