精英家教网 > 初中数学 > 题目详情
17.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为$\widehat{BD}$的中点.若∠A=40°,则∠B=70度.

分析 首先连接BD,由AB为⊙O的直径,根据直径所对的圆周角是直角,可求得∠ADB的度数,继而求得∠ABD的度数,由圆的内接四边形的性质,求得∠C的度数,然后由点C为$\widehat{BD}$的中点,可得CB=CD,即可求得∠CBD的度数,继而求得答案.

解答 解:连接BD,
∵AB为⊙O的直径,
∴∠ADB=90°,
∵∠A=40°,
∴∠ABD=90°-∠A=50°,∠C=180°-∠A=140°,
∵点C为$\widehat{BD}$的中点,
∴CD=CB,
∴∠CBD=∠CDB=20°,
∴∠ABC=∠ABD+∠CBD=70°.
故答案为:70°.

点评 此题考查了圆周角定理、圆的内接四边形的性质以及弧与弦的关系.注意准确作出辅助线是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.下列命题中正确的个数是(  )
①垂直于弦的直径平分线以及弦所对的两条弧.②平分弦的直径垂直于这条弦,并且平分这条弦所对的两条弧.③弦的垂直平分线经过圆心,并且平分这条弦所对的两条弦.④平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为$\sqrt{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为(  )
A.$\sqrt{3}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,AD是△ABC的中线,tanB=$\frac{1}{3}$,cosC=$\frac{\sqrt{2}}{2}$,AC=$\sqrt{2}$.求:
(1)BC的长;
(2)sin∠ADC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.综合与探究
如图1,在平面直角坐标系xOy中,抛物线W的函数表达式为y=-$\frac{4}{21}$x2+$\frac{16}{21}$x+4.抛物线W与x轴交于A,B两点(点B在点A的右侧,与y轴交于点C,它的对称轴与x轴交于点D,直线l经过C、D两点.
(1)求A、B两点的坐标及直线l的函数表达式.
(2)将抛物线W沿x轴向右平移得到抛物线W′,设抛物线W′的对称轴与直线l交于点F,当△ACF为直角三角形时,求点F的坐标,并直接写出此时抛物线W′的函数表达式.
(3)如图2,连接AC,CB,将△ACD沿x轴向右平移m个单位(0<m≤5),得到△A′C′D′.设A′C交直线l于点M,C′D′交CB于点N,连接CC′,MN.求四边形CMNC′的面积(用含m的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.
(1)求BC的长;
(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.
已知:如图1,在四边形ABCD中,BC=AD,AB=CD
求证:四边形ABCD是平行四边形.
(1)填空,补全已知和求证;
(2)按嘉淇的想法写出证明;
(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是(  )
A.8B.9C.10D.11

查看答案和解析>>

同步练习册答案