精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.

(1)求证:PC是⊙O的切线;
(2)求证:BC= AB;
(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MNMC的值.

【答案】
(1)证明:∵OA=OC,

∴∠A=∠ACO.

又∵∠COB=2∠A,∠COB=2∠PCB,

∴∠A=∠ACO=∠PCB.

又∵AB是⊙O的直径,

∴∠ACO+∠OCB=90°.

∴∠PCB+∠OCB=90°.

即OC⊥CP,

∵OC是⊙O的半径.

∴PC是⊙O的切线.


(2)证明:∵AC=PC,

∴∠A=∠P,

∴∠A=∠ACO=∠PCB=∠P.

又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,

∴∠COB=∠CBO,

∴BC=OC.

∴BC= AB


(3)解:连接MA,MB,

∵点M是 的中点,

=

∴∠ACM=∠BCM.

∵∠ACM=∠ABM,

∴∠BCM=∠ABM.

∵∠BMN=∠BMC,

∴△MBN∽△MCB.

=

∴BM2=MNMC.

又∵AB是⊙O的直径, =

∴∠AMB=90°,AM=BM.

∵AB=8,

∴BM=4

∴MNMC=BM2=32.


【解析】(1)利用直径上的圆周角是直角和圆的定义易证;
(2)利用等腰三角形的性质和直角三角形的性质来证明;
(3)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,从而可证得△MBN∽△MCB.再利用相似三角形的对应边成比例得到BM2=MNMC.在Rt△ABM中求出BM,即可得到结论.
【考点精析】掌握相似三角形的判定与性质是解答本题的根本,需要知道相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若我们规定三角“”表示为:abc;方框“”表示为:(xm+yn).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:

(1)计算:= ______ ;

(2)代数式为完全平方式,则k= ______ ;

(3)解方程:=6x2+7.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y的图象经过点A(4,m),ABx轴,且△AOB的面积为2.

(1)求km的值;

(2)若点C(xy)也在反比例函数y的图象上,当-3≤x≤-1时,求函数值y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△AOB和△COD中,∠AOB=COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒20°的速度沿顺时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:A(0,1),B(2,0),C(4,3)

(1)在直角坐标系中描出各点,画出△ABC

(2)求△ABC的面积;

(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,己知A(60),将线段OA平移至CB,点Dx轴正半轴上(不与点A重合),点C的坐标为,且连接OCABCDBD

(1)写出点C的坐标为______;点B的坐标为________

(2)的面积是的面积的3倍时,求点D的坐标;

(3),判断之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,解答下面的问题:

我们知道方程有无数个解,但在实际问题中往往只需求出其正整数解.

例:由,得:( 为正整数).要使为正整数,则为正整数,可知: 为3的倍数,从而,代入.所以的正整数解为

问题:

(1)请你直接写出方程=8的正整数解

(2)若为自然数,则满足条件的正整数的值有( )

A.3个 B.4个 C.5个 D.6个

(3)关于 的二元一次方程组的解是正整数,求整数的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组 ,并将解集在数轴上表示.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.

(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.

查看答案和解析>>

同步练习册答案