精英家教网 > 初中数学 > 题目详情

【题目】2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm)如下表所示:

队员1

队员2

队员3

队员4

甲组

176

177

175

176

乙组

178

175

177

174

设两队队员身高的平均数依次为,方差依次为S2S2,下列关系中完全正确的是(  )

A.S2S2B.S2S2

C.S2S2D.S2S2

【答案】A

【解析】

根据平均数及方差计算公式求出平均数及方差,然后可判断.

解:=(177+176+175+176÷4176

=(178+175+177+174÷4176

s2 [1771762+1761762+1751762+1761762]0.5

s2 [1781762+1751762+1771762+1741762]2.5

s2s2

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】经市场调查,发现进价为40元的某童装每月的销售量y(件)与售价x(元)满足一次函数关系,且相关信息如下:

售价x(元)

60

70

80

90

……

销售量y(件)

280

260

240

220

……

1)求这个一次函数关系式;

2)售价为多少元时,当月的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:将一副直角三角板(Rt△ABCRt△DEF)按图1所示的方式摆放,其中∠ACB=90°CA=CB∠FDE=90°OAB的中点,点D与点O重合,DF⊥AC于点MDE⊥BC于点N,试判断线段OMON的数量关系,并说明理由.

探究展示:小宇同学展示出如下正确的解法:

解:OM=ON,证明如下:

连接CO,则COAB边上中线,

∵CA=CB∴CO∠ACB的角平分线.(依据1

∵OM⊥ACON⊥BC∴OM=ON.(依据2

反思交流:

1)上述证明过程中的依据1”依据2”分别是指:

依据1

依据2

2)你有与小宇不同的思考方法吗?请写出你的证明过程.

拓展延伸:

3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点MBC的延长线与DE垂直相交于点N,连接OMON,试判断线段OMON的数量关系与位置关系,并写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知平行四边形ABCD的点A(0,﹣2)、点B(3m,4m+1)(m﹣1),点C(6,2),则对角线BD的最小值是(  )

A. 3 B. 2 C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD 中,GCD上一点,BGAD延长线于EAF=CG

1 求证:DF=BG

2)求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AD平分∠BAC,DE∥AC交AB于E,DFAB交AC于F,若AF=6,则四边形AEDF的周长是(   )

A. 24 B. 28 C. 32 D. 36

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A100),C04),DOA的中点,PBC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是作已知角的角平分线”的尺规作图过程.

已知:如图1,MON

求作:射线OP,使它平分MON

作法:如图2

(1)以点O为圆心,任意长为半径作弧,交OM于点A,交ON于点B

(2)连结AB

(3)分别以点AB为圆心,大于AB的长为半径作弧,两弧相交于点P

(4)作射线OP

所以,射线OP即为所求作的射线.

请回答:该尺规作图的依据是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍

(1)求甲、乙两个工程队每天各修路多少千米?

(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?

查看答案和解析>>

同步练习册答案