精英家教网 > 初中数学 > 题目详情

【题目】如图,把某矩形纸片ABCD沿EFGH折叠(点EHAD边上,点FGBC边上),使得点B、点C落在AD边上同一点P处,A点的对称点为点,D点的对称点为点,若的面积为4的面积为1,则矩形ABCD的面积等于_____.

【答案】.

【解析】

根据相似三角形的判断得到A'EPD'PH,由三角形的面积公式得到SA'EP,再由折叠的性质和勾股定理即可得到答案.

A'EPF

∴∠A'EP=D'PH

又∵∠A=A'=90°,∠D=D'=90°

∴∠A'=D'

∴△A'EPD'PH

又∵AB=CDAB=A'PCD=D'P

A'P= D'P

A'P=D'P=x

SA'EPSD'PH=41

A'E=2D'P=2x

SA'EP=

A'P=D'P=2

A'E=2D'P=4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AD平分∠BACBC于点D,OAB上一点,经过点A,D⊙O分别交AB,AC于点E,F,连接OFAD于点G.

(1)求证:BC⊙O的切线;

(2)AB=x,AF=y,试用含x,y的代数式表示线段AD的长;

(3)BE=8,sinB=,求DG的长,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边三角形中,在边上,.为边上一动点(不与点重合),连接关于的轴对称图形为

1)当点上时,求证:

2)当三点共线时,求的长;

3)连接的面积为的面积为是否存在最大值?若存在,请直接写出的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtAOB中,∠AOB90°,OA3OB2,将RtAOB绕点O顺时针旋转90°后得RtFOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以OE为圆心,OAED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,为原点,抛物线经过三点,且其对称轴为其中点,点

1)求抛物线的解析式;

2)①如图(1),点是直线上方抛物线上的动点,当四边形的面积取最大值时,求点的坐标;

②如图(2),连接在抛物线上有一点满足,请直接写出点的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知的圆心为点,抛物线yax2x+c过点A,与交于BC两点,连接ABAC,且ABACBC两点的纵坐标分别是21

1)求BC点坐标和抛物线的解析式;

2)直线ykx+1经过点B,与x轴交于点D.点E(与点D不重合)在该直线上,且ADAE,请判断点E是否在此抛物线上,并说明理由;

3)如果直线yk1x1与⊙A相切,请直接写出满足此条件的直线解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”,已知点分别是“果圆”与坐标轴的交点,抛物线的解析式为为半圆的直径,则这个“果圆”被轴截得的弦的长为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在中,分别是边的中点,在边上取点,点在边上,且满足,连接,作于点于点,线段分割成IIIIIIIV四个部分,将这四个部分重新拼接可以得到如图2所示的矩形,若,则图1的长为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.

【问题引入】

(1)若点O是AC的中点, ,求的值;

温馨提示:过点A作MN的平行线交BN的延长线于点G.

【探索研究】

(2)若点O是AC上任意一点(不与A,C重合),求证:

【拓展应用】

(3)如图②所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F.若 ,求的值.

查看答案和解析>>

同步练习册答案