精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,CE是DCB的角平分线,且交AB于点E,DB与CE相交于点O,

(1)求证:EBC是等腰三角形;

(2)已知:AB=7,BC=5,求的值.

【答案】(1)证明见解析(2)

【解析】

试题(1)欲证明EBC是等腰三角形,只需推知BC=BE即可,可以由∠2=∠3得到:BC=BE

(2)通过相似三角形△COD∽△EOB的对应边成比例得到,然后利用分式的性质可以求得.

解:(1)∵四边形ABCD是平行四边形,

∴CD∥AB,

∴∠1=∠2.

CE平分∠BCD,

∴∠1=∠3,

∴∠2=∠3,

∴BC=BE,

∴△EBC是等腰三角形;

(2)∵∠1=∠2,∠4=∠5,

∴△COD∽△EOB,

=

平行四边形ABCD,

∴CD=AB=7.

∵BE=BC=5,

==

=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线轴交于点

(1)试确定该抛物线的函数表达式;

(2)已知点是该抛物线的顶点,求的面积;

(3)若点是线段上的一动点,求的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题发现

如图1,在OABOCD中,OA=OB,OC=OD,AOB=COD=40°,连接AC,BD交于点M.填空:

的值为   

②∠AMB的度数为   

(2)类比探究

如图2,在OABOCD中,∠AOB=COD=90°,OAB=OCD=30°,连接ACBD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;

(3)拓展延伸

在(2)的条件下,将OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一块矩形铁皮,长12dm,宽4dm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,制作一个无盖方盒,如果要使制作的无盖方盒的侧面积.占矩形铁皮面积的八分之五,设各角切去的正方形的边长为xdm

1)用含x的代数式表示,盒底的长为______dm,盒底的宽为______dm

2)求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在反比例函数y= 的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y= 的图象上运动,若tanCAB=2,则k的值为(

A. ﹣3 B. ﹣6 C. ﹣9 D. ﹣12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD52米到点D处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i12.4.大楼AB的高度约为(  )(参考数据:sin37°≈0.60cos37°≈0.80tan37°≈0.75

A. 32B. 35C. 36D. 40

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明根据学习函数的经验,对函数y+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:

1)函数y+1的自变量x的取值范围是   

2)如表列出了yx的几组对应值,请写出mn的值:m   n   

x

1

0

2

3

y

m

0

1

n

2

3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象.

4)结合函数的图象,解决问题:

①写出该函数的一条性质:   

②当函数值+1时,x的取值范围是:   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为更好地推进太原市生活垃圾分类工作,改善城市生态环境,20191217日,太原市政府召开了太原市生活垃圾分类推进会,意味着太原垃圾分类战役的全面打响.某小区准备购买两种型号的垃圾箱,通过市场调研得知:购买3型垃圾箱和2型垃圾箱共需540元,购买2型垃圾箱比购买3型垃圾箱少用160元.

1)求每个型垃圾箱和型垃圾箱各多少元?

2)该小区物业计划用不多于2100元的资金购买两种型号的垃圾箱共20个,则该小区最多可以购买型垃圾箱多少个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的图象如图所示,给出下列说法:

②方程的根为④当时,值的增大而增大;⑤当时,其中,正确的说法有________(请写出所有正确说法的序号).

查看答案和解析>>

同步练习册答案