精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,抛物线轴相交于原点和点,点在抛物线上.

1)求抛物线的表达式,并写出它的对称轴;

2)求的值.

【答案】1,它的对称轴为:;(22

【解析】

1)把点,点分别代入,求出的值,即可得到抛物线的表达式,根据抛物线的对称轴公式即可求出它的对称轴,

2)把点代入,求出的值,得到点的坐标,过点,交于点,过点,交于点,根据三角形的面积和勾股定理,求出线段的长,即可得到答案.

解:(1)把点,点分别代入得:

解得:

即抛物线的表达式为:

它的对称轴为:

2)把点代入得:

即点的坐标为:(33),

过点,交于点,过点,交于点,如下图所示,

故答案为:(1,它的对称轴为:x=2;(22.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D,直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.

(1)求m的值及该抛物线的解析式

(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标.

(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1D是⊙O的直径BC上的一点,过DDEBC交⊙OENF是⊙O上的一点,过F的直线分别与CBDE的延长线相交于AP,连结CFPDM,∠CP

1)求证:PA是⊙O的切线;

2)若∠A30°,⊙O的半径为4DM1,求PM的长;

3)如图2,在(2)的条件下,连结BFBM;在线段DN上有一点H,并且以HDC为顶点的三角形与△BFM相似,求DH的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=﹣x2+bx+3的图象与x轴交于AC两点(点A在点C的左侧),与y轴交于点B,且OAOB

1)求线段AC的长度;

2)若点P在抛物线上,点P位于第二象限,过PPQAB,垂足为Q.已知PQ,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在矩形ABCD中,对角线ACBD相交于点O,过点CBD的平行线,过点DAC的平行线,两线交于点P

求证:四边形CODP是菱形.

AD6AC10,求四边形CODP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:

(1)求新坡面的坡角∠CAB的度数;

(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点P(14)Q(mn)在函数y(k0)的图象上,当m1时,过点P分别作x轴、y轴的垂线,垂足为点AB;过点Q分别作x轴、y轴的垂线,垂足为点CDQDPA于点E,随着m的增大,四边形ACQE的面积(  )

A. 增大 B. 减小

C. 先减小后增大 D. 先增大后减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5x5.5,另外每天还需支付其他各项费用80元.

销售单价x(元)

3.5

5.5

销售量y(袋)

280

120

1)请直接写出yx之间的函数关系式;

2)如果每天获得160元的利润,销售单价为多少元?

3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017安徽省)如图,游客在点A处做缆车出发,沿ABD的路线可至山顶D处,假设ABBD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.

(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)

查看答案和解析>>

同步练习册答案