精英家教网 > 初中数学 > 题目详情
如图,已知线段AC∥y轴,点B在第一象限,且AO平分∠BAC,AB交y轴与G,连OB、OC.
(1)判断△AOG的形状,并予以证明;
(2)若点B、C关于y轴对称,求证:AO⊥BO.
考点:全等三角形的判定与性质,坐标与图形性质,轴对称的性质
专题:
分析:(1)易证∠CAO=∠AOG和∠CAO=∠GAO,即可判定△AOG是等腰三角形;
(2)连接BC交y轴于K,过A作AN⊥y轴于N,易证△ANG≌△BKG,即可证明∠BOG=∠OBG,∠OAG=∠AOG,根据三角形内角和为180°性质即可解题.
解答:解:(1)等腰三角形;
证明:∵AC∥y轴,
∴∠CAO=∠AOG,
∵AO平分∠BAC,
∴∠CAO=∠GAO,
∴∠GAO=∠AOG,
∴AG=GO,
∴△AOG是等腰三角形;
(2)连接BC交y轴于K,过A作AN⊥y轴于N,

∵AC∥y轴,点B、C关于y轴对称,
∴AN=CK=BK,
在△ANG和△BKG中,
∠AGN=∠BGK
∠ANG=∠BKG
AN=BK

∴△ANG≌△BKG,(AAS)
∴AG=BG,
∵AG=OG,(1)中已证,
∴AG=OG=BG,
∴∠BOG=∠OBG,∠OAG=∠AOG,
∵∠OAG+∠AOG+∠BOG+∠OBG=180°,
∴∠AOG+∠BOG=90°,
∴AO⊥BO.
点评:本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证△ANG≌△BKG是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

约分
4x2y
6xy2
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当DE⊥EF,E是BC的中点时,试比较BD+CF与DF的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD=BD,AD⊥BC,垂足为D,BF⊥AC,垂足为F,BC=8cm,DC=3cm,则AE=
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

有一个质地均匀的正十二面体,十二个面上分别写有1-12这十二个整数.投掷这个正十二面体一次,求下列事件的概率;
(1)向上一面的数字是2或3;
(2)向上一面的数字是2的倍数或3的倍数.(最好列出表)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.
(1)请写出这个反比例函数的解析式;
(2)蓄电池的电压是多少?
(3)完成下表:
 R/Ω 3 4 5 6 7 8 9 10
 I/A        
(4)如果以此蓄电池为电源的用电器的限制电流不能超过10A,那么用电器可变电阻应控制在什么范围?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程x2-kx-k+3=0有两个不等实根:α、β.
(1)设T=α22+4αβ,求T的取值范围;
(2)若满足0<α<1<β<2,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

方程组
2x-y=3m
2y-x=4m+5
的解满足x+y=-2,则m的值
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图甲,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,设BD=m,CE=n
(1)求DE的长(用含m,n的代数式表示);
(2)如图乙,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=a(0°<a<180°),设BD=m,CE=n.问DE的长如何表示?并请证明你的结论.

查看答案和解析>>

同步练习册答案