精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)与x轴分别交于A(x1 , 0)、
B(x2 , 0)两点,直线y2=2x+t经过点A.

(1)已知A、B两点的横坐标分别为3、﹣1.
①当a=1时,直接写出抛物线y1和直线y2相应的函数表达式;
②如图,已知抛物线y1在3<x<4这一段位于直线y2的下方,在5<x<6这一段位于直线y2的上方,求a的取值范围;
(2)若函数y=y1+y2的图象与x轴仅有一个公共点,探求x2﹣x1与a之间的数量关系.

【答案】
(1)解:①∵已知抛物线y1=a(x﹣x1)(x﹣x2)经过A(x1,0)、B(x2,0)两点,当a=1,

∴y1=(x﹣3)(x+1),

∵直线y2=2x+t经过点A,

∴0=2×3+t,

解得:t=﹣6,

∴y2=2x﹣6;

②设y1=a(x﹣3)(x+1),

由题意可得,当x=4时,y1=5a<2,

∴a<

当x=5时,y1=12a>4,

∴a>

a<


(2)解:∵直线y2过点A(x1,0),

∴0=2x1+t,∴t=﹣2x1

∴y=y1+y2=a(x﹣x1)(x﹣x2)+2x﹣2x1=(x﹣x1)[a(x﹣x1)+2]

∴方程的根为x1,x2

∵函数y的图象与x轴仅有一个公共点,

∴x1=x2

∴x2﹣x1=


【解析】
(1)①根据已知条件得出当a=1时,得到y1=(x﹣3)(x+1),由于直线y2=2x+t经过点A,得到方程0=2×3+t,得到t=﹣6,

于是得到结论;②设y1=a(x﹣3)(x+1),根据题意得出不等式即可得出结论;(2)根据已知条件得到y=y1+y2=a(x﹣x1)(x﹣x2)+2x﹣2x1=(x﹣x1)[a(x﹣x1)+2],根据函y的图像与x轴仅有一个公共点,于是得到结论。

【考点精析】通过灵活运用确定一次函数的表达式和抛物线与坐标轴的交点,掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知直线l1∥l2l3l4l1l2分别交于点ABCD,点P在直线l3l4上且不与点ABCD重合.记∠AEP=∠1∠PFB=∠2∠EPF=∠3

1)若点P在图(1)位置时,求证:∠3=∠1+∠2

2)若点P在图(2)位置时,请直接写出∠1∠2∠3之间的关系;

3)若点P在图(3)位置时,写出∠1∠2∠3之间的关系并给予证明;

4)若点PCD两点外侧运动时,请直接写出∠1∠2∠3之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个三角板(含30°、60°角)和一把直尺摆放位置如图所示,直尺与三角板的一角相交于点A,一边与三角板的两条直角边分别相交于点D、点E,且CD=CE,点F在直尺的另一边上,那么∠BAF的大小为°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了鼓励市民节约用水,某市水费实行阶梯式计量水价.每户每月用水量不超过25吨,收

费标准为每吨a元;若每户每月用水量超过25吨时,其中前25吨还是每吨a元,超出的部

分收费标准为每吨b元.下表是小明家一至四月份用水量和缴纳水费情况.根据表格提供的数

据,回答:

月份

用水量(吨)

16

18

30

35

水费(元)

32

36

65

80

1a=________b=________

2)若小明家五月份用水32吨,则应缴水费   元;

3)若小明家六月份应缴水费102.5元,则六月份他们家的用水量是多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果店去年38月销售吐鲁番葡萄、哈密瓜的情况如下表:

3

4

5

6

7

8

吐鲁番葡萄(单位:百公斤)

4

8

5

8

10

13

哈密瓜(单位:百公斤)

8

7

9

7

10

7

(1)请你根据以上数据填写下表:

平均数/百公斤

方差

吐鲁番葡萄

8

9

哈密瓜

(2)请你根据上述信息,对这两种水果在去年3月份至8月份的销售情况进行分析.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司有330台机器要运送到外地,计划租用甲、乙两种货车.已知甲种货车每辆租金400元,乙种货车每辆租金280元,若租用3辆甲种货车和2辆乙种货车,可运送195台机器;若租用4辆甲种货车和1辆乙种货车,可运送210台机器;
(1)求每辆甲种货车和乙种货车能运送的机器数量;
(2)请给出一次性将机器运送到目的地的最节省费用的租车方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】长方体敞口玻璃罐,长、宽、高分别为16 cm6 cm6 cm,在罐内点E处有一小块饼干碎末,此时一只蚂蚁正好在罐外壁,在长方形ABCD中心的正上方2 cm处,则蚂蚁到达饼干的最短距离是多少cm.(  )

A. 7B.

C. 24D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,铁路上AB两点相距25kmCD为两村庄,DAABACBABB,已知DA15kmCB10km,现在要在铁路AB上建一个土特产品收购站E,使得CD两村到E站的距离相等,则E站应建在距A站多少千米处?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(01)A2(11)A3(10)A4(20),那么A2020坐标为(

A.(20201)B.(20200)C.(10101)D.(10100)

查看答案和解析>>

同步练习册答案