【题目】作出函数的图象,并利用图象回答问题:
(1)写出图象与轴的交点A的坐标________,与轴的交点B的坐标________.
(2)当时,的取值范围是______________.
(3)有一点C的坐标是(3,4),顺次连接点A、B、C得到△ABC,三角形ABC的面积为________.
(4)点C关于轴对称的点D的坐标
(5)连接B,D两点,求直线BD的函数关系式.
【答案】画图见解析;(1)A(2,0),B(0,2);(2)y<3;(3)5;(4)(3,-4);(5)y=-2x+2
【解析】
求出函数与x轴和y轴的交点坐标即可作出函数图像;
(1)由图像的画法即可解答;
(2)求出x=-1时y的值,结合图形解答即可;
(3)用割补法求解即可;
(4)根据关于x轴对称的点横坐标不变,纵坐标互为相反数求解即可;
(5)用待定系数法求解即可.
解:当x=0时, =0,
当y=0时,0=-x+2,即x=2.
(1)图象与轴的交点A的坐标(2,0),与轴的交点B的坐标(0,2);
(2)∵当x=-1时,y=1+2=3,
∴当时,的取值范围是y<3;
(3)S△ABC=
=12-2-2-3
=5;
(4)∵C的坐标是(3,4),
∴点D的坐标(3,-4);
(5)设直线BD的解析式为y=kx+b,把(0,2),(3,-4)代入得
,
解得
,
∴y=-2x+2.
科目:初中数学 来源: 题型:
【题目】已知O为正方形ABCD的中心,M为射线OD上一动点(M与点O,D不重合),以线段AM为一边作正方形AMEF,连接FD.
(1)当点M在线段OD上时(如图1),线段BM与DF有怎样的数量及位置关系?请说明理由;
(2)当点M在线段OD的延长线上时(如图2),(1)中的结论是否仍然成立?请结合图2说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三个顶点的坐标分别为,,。
(1)请画出关于轴对称后得到的;
(2)直接写出点,点,点的坐标;
(3)在轴上寻找一个点,使的周长最小,并直接写出的周长的最小值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是合同三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形(如图1),若运动方向相反,则称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°.下列各组合同三角形中,是镜面合同三角形的是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,两条对角线相交于点O,AE平分∠BAD交于BC边上的中点E,连接OE.下列结论:①∠ACB=30°;②OE⊥BC;③OE=BC;④S△ACE=SABCD.其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD中,点E,F分别为BC,CD上的点,连接AE,BF相交于点H,且AE⊥BF.
(1)如图1,连接AC交BF于点G,求证:∠AGF=∠AEB+45°;
(2)如图2,延长BF到点M,连接MC,若∠BMC=45°,求证:AH+BH=BM;
(3)如图3,在(2)的条件下,若点H为BM的三等分点,连接BD,DM,若HE=1,求△BDM的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )
A.带①去B.带②去C.带③去D.带①和②去
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的例题:
解方程
解:(1)当x≥0时,
原方程化为x2 – x –2=0,
解得:x1=2,x2= - 1(不合题意,舍去)
(2)当x<0时,
原方程化为x2 + x –2=0,
解得:x1=1,(不合题意,舍去)x2= -2
∴原方程的根是x1=2, x2= - 2
(3)请参照例题解方程
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com