精英家教网 > 初中数学 > 题目详情

【题目】已知正方形ABCD中,点E,F分别为BC,CD上的点,连接AE,BF相交于点H,且AE⊥BF.

(1)如图1,连接ACBF于点G,求证:∠AGF=∠AEB+45°;

(2)如图2,延长BF到点M,连接MC,若∠BMC=45°,求证:AH+BH=BM;

(3)如图3,在(2)的条件下,若点HBM的三等分点,连接BD,DM,若HE=1,求△BDM的面积.

【答案】(1)证明见解析;(2)证明见解析;(3)6.

【解析】

(1)根据正方形的性质得到∠ACB=ACD=45°,根据余角 的性质得到∠AEB=BFC,于是得到结论;
(2)过CCKBMK,得到∠BKC=90°,推出四边形ABCD是正方形,根据正方形的性质得到AB=BC,ABC=BCD=90°,得到∠ABH=BCK,在ABH根据全等三角形的性质即可得到结论;
(3)过EENCKN,得到四边形HENK是矩形,根据矩形的性质得到HK=EN=BH,BHE=NEC,根据全等三角形的性质得到HE=CN=NK=1,求得CK=BH=2,得到BM=6,连接CH,根据全等三角形的性质得到BH=DM=2,BHC=DMC=135°.求得∠DMB=90°,于是得到结论.

(1)∵四边形ABCD是正方形,∴∠ABC=BCD=90°,

∴∠ACB=ACD=45°,

AEBF,

∴∠AEB+FBC=90°,

∵∠FBC+BFC=90°,

∴∠AEB=BFC,

∵∠AGF=BFC+ACF,

∴∠AGF=AEB+45°.

(2)CCKBMK,

∴∠BKC=AHB=90°,

∵∠BMC=45°,

CK=MK,

∵四边形ABCD是正方形,∴AB=BC,ABC=BCD=90°,

∴∠ABH=BCK,

∴△ABH≌△BCK(AAS),

BH=CK=MK,AH=BK,BM=BK+MK=AH+BH.

(3)(2)得,BH=CK=MK,HBM的三等分点,

BH=HK=KM,

EENCKN,∴四边形HENK是矩形,

HK=EN=BH,BHE=ENC,∴△BHE≌△ENC(ASA),

HE=CN=NK=1,CK=BH=2,

BM=6,

连接CH,

HK=MK,CKMH,BMC=45°,CH=CM,MCH=90°,

∴∠BCH=DCM,∴△BHC≌△DMC(SAS),

BH=DM=2,BHC=DMC=135°,

∴∠DMB=90°,

∴△BDM的面积为DM·BM=6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点BF为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF

1)四边形ABEF_______;(选填矩形、菱形、正方形、无法确定)(直接填写结果)

2AEBF相交于点O,若四边形ABEF的周长为40BF=10,则AE的长为________∠ABC=________°.(直接填写结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是(  )

A. ①③B. ①②④C. ①③④D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ADDEECFBC中点,GFC中点,如果△ABC的面积是24平方厘米,则阴影部分面积是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】作出函数的图象,并利用图象回答问题:

(1)写出图象与轴的交点A的坐标________,与轴的交点B的坐标________.

(2)时,的取值范围是______________.

(3)有一点C的坐标是(34),顺次连接点ABC得到ABC,三角形ABC的面积为________.

(4)C关于轴对称的点D的坐标

(5)连接BD两点,求直线BD的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学兴趣小组的活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图①位置放置,ADAE在同一直线上,ABAG在同一直线上.

⑴小明发现DGBE,请你帮他说明理由.

⑵如图②,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ΔABC中,AB>BC,AB=AC,DEAB的垂直平分线,垂足为D点,交AC于点E.

1)若∠ABE=40°,求∠EBC的度数;

2)若ΔABC的周长为41cm,一边为15cm,求ΔBCE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(7分)如图,已知抛物线yx2bxc经过A(-1,0),B(3,0)两点.

(1)求抛物线的解析式和顶点坐标;

(2)当0<x<3时,求y的取值范围;

(3)点P为抛物线上一点,若SPAB=10,求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线开口向上且经过点,双曲线经过点,给出下列结论:c是关于x的一元二次方程的两个实数根;其中正确结论是______填写序号

查看答案和解析>>

同步练习册答案